csuhan's picture
Upload folder using huggingface_hub
b0c0df0 verified
import abc
import ast
import copy
import inspect
import itertools
import json
import os
import random
import re
import shutil
import subprocess
from collections.abc import Callable
from dataclasses import asdict, dataclass, field
from functools import partial
from glob import glob
from typing import (
Any,
Dict,
Iterable,
Iterator,
List,
Literal,
Mapping,
Optional,
Tuple,
Union,
)
import datasets
import numpy as np
from accelerate import Accelerator
from datasets import Audio, DownloadConfig, Image, Sequence
from huggingface_hub import snapshot_download
from loguru import logger as eval_logger
from PIL import Image as PIL_Image
from PIL import ImageFile
from tenacity import retry, stop_after_attempt, stop_after_delay, wait_fixed
from tqdm import tqdm
from lmms_eval import utils
from lmms_eval.api import samplers
from lmms_eval.api.instance import Instance
from lmms_eval.api.registry import (
AGGREGATION_REGISTRY,
DEFAULT_METRIC_REGISTRY,
METRIC_REGISTRY,
OUTPUT_TYPE_REGISTRY,
get_aggregation,
get_metric,
get_metric_aggregation,
is_higher_better,
)
from lmms_eval.caching.cache import load_from_cache, save_to_cache
from lmms_eval.filters import build_filter_ensemble
# HuggingfaceM4/NoCaps contains truncated image in test split
# Include this inside code block to avoid error
ImageFile.LOAD_TRUNCATED_IMAGES = True
ALL_OUTPUT_TYPES = [
"loglikelihood",
"multiple_choice",
"generate_until",
"generate_until_multi_round",
]
@dataclass
class TaskConfig(dict):
# task naming/registry
task: str = None
task_alias: str = None
tag: str = None
group: Union[str, list] = None
group_alias: Union[str, list] = None
# HF dataset options.
# which dataset to use,
# and what splits for what purpose
dataset_path: str = None
dataset_name: str = None
dataset_kwargs: dict = None
training_split: str = None
validation_split: str = None
test_split: str = None
fewshot_split: str = None # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
full_docs: bool = False
# formatting / prompting options.
# see docs/advanced_task_guide.md for more info
process_results_use_image: bool = False
process_docs: Callable = None
doc_to_visual: Union[Callable, str] = None
doc_to_text: Union[Callable, str] = None
doc_to_target: Union[Callable, str] = None
doc_to_choice: Union[Callable, str, dict, list] = None
doc_to_messages: Callable = None
process_results: Union[Callable, str] = None
use_prompt: str = None
description: str = ""
target_delimiter: str = " "
fewshot_delimiter: str = "\n\n"
fewshot_config: dict = None
# runtime configuration options
num_fewshot: int = None
# scoring options
metric_list: list = None
output_type: str = "generate_until"
generation_kwargs: dict = None
repeats: int = 1
filter_list: Union[str, list] = None
should_decontaminate: bool = False
doc_to_decontamination_query: str = None
metadata: Union[str, list] = None # by default, not used in the code. allows for users to pass arbitrary info to tasks
lmms_eval_specific_kwargs: dict = None
model_specific_generation_kwargs: dict = None
model_specific_target_kwargs: dict = None
def __post_init__(self) -> None:
if self.dataset_path and os.path.exists(os.path.dirname(self.dataset_path)):
import inspect
from importlib import import_module
# self.dataset_path = inspect.getfile(import_module(self.dataset_path))
if self.group is not None:
eval_logger.warning(
"A task YAML file was found to contain a `group` key. Groups which provide aggregate scores over several subtasks now require a separate config file--if not aggregating, you may want to use the `tag` config option instead within your config. Setting `group` within a TaskConfig will be deprecated in v0.4.4. Please see https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/task_guide.md for more information."
)
if self.tag is None:
self.tag = self.group
else:
raise ValueError("Got both a `group` and `tag` entry within a TaskConfig. Please use one or the other--`group` values will be deprecated in v0.4.4.")
if self.generation_kwargs is not None:
if "generate_until" not in self.output_type:
eval_logger.warning(f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!")
assert "generate_until" not in self.output_type
if "temperature" in self.generation_kwargs:
self.generation_kwargs["temperature"] = float(self.generation_kwargs["temperature"])
if "until" not in self.generation_kwargs:
self.generation_kwargs["until"] = [self.fewshot_delimiter]
else:
if "generate_until" in self.output_type:
# ensure that we greedily generate in absence of explicit arguments otherwise
self.generation_kwargs = {
"until": None if self.fewshot_delimiter is None else [self.fewshot_delimiter],
"do_sample": False,
}
# TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?
def __getitem__(self, item):
return getattr(self, item)
def __setitem__(self, item, value):
return setattr(self, item, value)
def to_dict(self):
"""dumps the current config as a dictionary object, as a printable format.
null fields will not be printed.
Used for dumping results alongside full task configuration
:return: dict
A printable dictionary version of the TaskConfig object.
# TODO: should any default value in the TaskConfig not be printed?
"""
cfg_dict = asdict(self)
# remove values that are `None`
for k, v in list(cfg_dict.items()):
if v is None:
cfg_dict.pop(k)
elif isinstance(v, Callable):
# TODO: this should handle Promptsource template objects as a separate case?
cfg_dict[k] = str(v)
return cfg_dict
class Task(abc.ABC):
"""A task represents an entire benchmark including its dataset, problems,
answers, and evaluation methods. See MME for a simple example implementation
A `doc` can be any python object which represents one instance of evaluation.
This is usually a dictionary e.g.
{"question": ..., "answer": ...} or
{"question": ..., question, answer)
"""
VERSION = None
# The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
# or a path to a custom `datasets` loading script.
DATASET_PATH: str = None
# The name of a subset within `DATASET_PATH`.
DATASET_NAME: str = None
OUTPUT_TYPE: str = None
def __init__(
self,
data_dir=None,
cache_dir=None,
download_mode=None,
config=None,
) -> None:
"""
:param data_dir: str
Stores the path to a local folder containing the `Task`'s data files.
Use this to specify the path to manually downloaded data (usually when
the dataset is not publicly accessible).
:param cache_dir: str
The directory to read/write the `Task` dataset. This follows the
HuggingFace `datasets` API with the default cache directory located at:
`~/.cache/huggingface/datasets`
NOTE: You can change the cache location globally for a given process
to another directory:
`export HF_DATASETS_CACHE="/path/to/another/directory"`
:param download_mode: datasets.DownloadMode
How to treat pre-existing `Task` downloads and data.
- `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
Reuse download and reuse dataset.
- `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
Reuse download with fresh dataset.
- `datasets.DownloadMode.FORCE_REDOWNLOAD`
Fresh download and fresh dataset.
"""
self.download(data_dir, cache_dir, download_mode)
self._training_docs = None
self._fewshot_docs = None
self._instances = None
self._config = TaskConfig({**config}) if config else TaskConfig()
self._filters = [build_filter_ensemble("none", [["take_first", None]])]
def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
"""Downloads and returns the task dataset.
Override this method to download the dataset from a custom API.
:param data_dir: str
Stores the path to a local folder containing the `Task`'s data files.
Use this to specify the path to manually downloaded data (usually when
the dataset is not publicly accessible).
:param cache_dir: str
The directory to read/write the `Task` dataset. This follows the
HuggingFace `datasets` API with the default cache directory located at:
`~/.cache/huggingface/datasets`
NOTE: You can change the cache location globally for a given process
by setting the shell environment variable, `HF_DATASETS_CACHE`,
to another directory:
`export HF_DATASETS_CACHE="/path/to/another/directory"`
:param download_mode: datasets.DownloadMode
How to treat pre-existing `Task` downloads and data.
- `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
Reuse download and reuse dataset.
- `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
Reuse download with fresh dataset.
- `datasets.DownloadMode.FORCE_REDOWNLOAD`
Fresh download and fresh dataset.
"""
self.dataset = datasets.load_dataset(
path=self.DATASET_PATH,
name=self.DATASET_NAME,
data_dir=data_dir,
cache_dir=cache_dir,
download_mode=download_mode,
)
self.dataset_no_image = datasets.load_dataset(
path=self.DATASET_PATH,
name=self.DATASET_NAME,
data_dir=data_dir,
cache_dir=cache_dir,
download_mode=download_mode,
)
for doc_name in self.dataset_no_image:
remove_cols = []
features = self.dataset_no_image[doc_name].features
# If it is an Image instance or a Sequence of Image instance. Remove it
for feature in features:
if isinstance(features[feature], Image):
remove_cols.append(feature)
elif isinstance(features[feature], Sequence) and isinstance(features[feature].feature, Image):
remove_cols.append(feature)
for remove_col in remove_cols:
self.dataset_no_image[doc_name] = self.dataset_no_image[doc_name].remove_columns(remove_col)
@property
def config(self):
"""Returns the TaskConfig associated with this class."""
return self._config
@abc.abstractmethod
def has_training_docs(self):
"""Whether the task has a training set"""
pass
@abc.abstractmethod
def has_validation_docs(self):
"""Whether the task has a validation set"""
pass
@abc.abstractmethod
def has_test_docs(self):
"""Whether the task has a test set"""
pass
def training_docs(self):
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return []
def validation_docs(self):
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return []
def test_docs(self):
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
return []
def fewshot_docs(self):
"""
:return: Iterable[obj]
A iterable of any object, that doc_to_text can handle
"""
if self.has_training_docs():
return self.training_docs()
elif self.has_validation_docs():
return self.validation_docs()
else:
if self.config.num_fewshot is not None:
eval_logger.warning("has_training_docs and has_validation_docs are False" ", using test_docs as fewshot_docs but this is not recommended.")
return self.test_docs()
def _process_doc(self, doc):
"""
Override this to process (detokenize, strip, replace, etc.) individual
documents. This can be used in a map over documents of a data split.
E.g. `map(self._process_doc, self.dataset["validation"])`
:return: dict
The processed version of the specified `doc`.
"""
return doc
@property
def instances(self):
"""After calling `task.build_all_requests()`, tasks
maintain a list of the dataset instances which will be evaluated.
"""
return self._instances
def fewshot_examples(self, k, rnd):
if self._training_docs is None:
self._training_docs = list(self.training_docs())
return rnd.sample(self._training_docs, k)
def doc_to_decontamination_query(self, doc) -> None:
print("Override doc_to_decontamination_query with document specific decontamination query.")
assert False
@abc.abstractmethod
def doc_to_text(self, doc):
pass
@abc.abstractmethod
def doc_to_target(self, doc):
pass
# @profile
def build_all_requests(
self,
*,
limit: Union[int, None] = None,
rank: int = 0,
world_size: int = 1,
cache_requests: bool = False,
rewrite_requests_cache: bool = False,
system_instruction: Optional[str] = None,
apply_chat_template: bool = False,
fewshot_as_multiturn: bool = False,
chat_template: Optional[Callable] = None,
tokenizer_name: str = "",
) -> None:
"""Build a set of Instances for a task, and store them in task.instances"""
if self.has_test_docs():
docs = self.test_docs()
split = self.config.test_split
elif self.has_validation_docs():
docs = self.validation_docs()
split = self.config.validation_split
else:
assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
# used with caching
og_limit = limit
cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
cache_key += "-chat_template" if apply_chat_template else ""
cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
cache_key += f"-system_prompt_hash{utils.hash_string(system_instruction)}" if system_instruction is not None else ""
cache_key += f"-tokenizer{tokenizer_name}"
cached_instances = load_from_cache(file_name=cache_key)
if cache_requests and cached_instances and not rewrite_requests_cache:
cached_instances = cached_instances[:limit]
flattened_instances = [instance for instance_group in cached_instances for instance in instance_group]
self._instances = flattened_instances
return
eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
instances = []
# process all documents when caching is specified for simplicity
if cache_requests and (not cached_instances or rewrite_requests_cache) and limit is not None:
limit = None
doc_id_docs = utils.create_iterator(enumerate(self.eval_docs_no_media), rank=rank, limit=int(limit) if limit else None, world_size=world_size)
doc_iterator_for_counting = itertools.islice(range(len(self.test_docs())), rank, limit, world_size) if self.has_test_docs() else itertools.islice(range(len(self.validation_docs())), rank, limit, world_size)
num_docs = sum(1 for _ in doc_iterator_for_counting)
for doc_id, doc in tqdm(
doc_id_docs,
total=num_docs,
):
# sample fewshot context #TODO: need to offset doc_id by rank now!
fewshot_ctx = self.fewshot_context(
doc,
0 if self.config.num_fewshot is None else self.config.num_fewshot,
system_instruction,
apply_chat_template,
fewshot_as_multiturn,
chat_template,
)
# TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
per_task_metadata = {"task": self.config["task"], "doc_id": doc_id, "repeats": self.config.repeats, "split": split}
if self.config.metadata and type(self.config.metadata) == dict: # TODO: temporary fix for metadata loading, ignore the list of dict type.
per_task_metadata.update(self.config.metadata)
inst = self.construct_requests(doc_id=doc_id, ctx=fewshot_ctx, metadata=per_task_metadata)
if not isinstance(inst, list):
inst = [inst]
instances.append(inst)
# now flatten, this is to allow slicing to work with pickles
sliced_instances = instances[:og_limit]
flattened_instances = [instance for instance_group in sliced_instances for instance in instance_group]
self._instances = flattened_instances
if len(self._instances) == 0:
raise ValueError("task.build_requests() did not find any docs!")
if cache_requests and (not cached_instances or rewrite_requests_cache):
save_to_cache(file_name=cache_key, obj=instances)
# FIXME: Bo - We need to check if the doc_to_visual if it's exists and restore it. If we use cache, the doc_to_visual will be None since it's not serializable
for instance in self._instances:
if instance.arguments[2] is None:
arguments = (instance.arguments[0], instance.arguments[1], self.doc_to_visual, *instance.arguments[3:])
else:
arguments = instance.arguments
instance.arguments = arguments
@abc.abstractmethod
def construct_requests(self, doc_id, ctx, **kwargs):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LMM.
:param doc_id: int
The index of a document within `self.test_docs()` or `self.validation_docs()`,
whichever is the main split used.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
:param repeats: int
TODO: update this docstring
The number of times each instance in a dataset is inferred on. Defaults to 1,
can be increased for techniques like majority voting.
"""
pass
@abc.abstractmethod
def process_results(self, doc, results):
"""Take a single document and the LMM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
pass
@abc.abstractmethod
def aggregation(self):
"""
:returns: {str: [metric_score] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metric scores
"""
pass
@abc.abstractmethod
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
pass
@classmethod
def count_bytes(cls, doc):
"""Used for byte-level perplexity metrics in rolling loglikelihood"""
return len(doc.encode("utf-8"))
@utils.positional_deprecated
def fewshot_context(
self,
doc_id,
num_fewshot,
split,
rnd=random.Random(1234),
description=None,
):
"""Returns a fewshot context string that is made up of a prepended description
(if provided), the `num_fewshot` number of examples, and an appended prompt example.
:param doc_id: int
The document id as returned from training_docs, validation_docs, or test_docs.
:param num_fewshot: int
The number of fewshot examples to provide in the returned context string.
:param split: str
The split of the document to retrieve from the dataset
:param rnd: random.Random
The pseudo-random number generator used to randomly sample examples.
WARNING: This is currently a required arg although it's optionalized with a default `None`.
:param description: str
The task's description that will be prepended to the fewshot examples.
:returns: str
The fewshot context.
"""
assert rnd is not None, "A `random.Random` generator argument must be provided to `rnd`"
description = description if description else ""
doc = self.dataset_no_image[split][doc_id]
if num_fewshot == 0:
labeled_examples = ""
else:
# for sets with no training docs, draw from other set *but ensure no overlap with current doc*
if self.has_training_docs():
fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
else:
if self._fewshot_docs is None:
self._fewshot_docs = list(self.validation_docs() if self.has_validation_docs() else self.test_docs())
fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
# get rid of the doc that's the one we're evaluating, if it's in the fewshot
fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
labeled_examples = "\n\n".join([self.doc_to_text(doc) + self.doc_to_target(doc) for doc in fewshotex]) + "\n\n"
example = self.doc_to_text(doc)
return description + labeled_examples + example
def apply_filters(self) -> Optional[List[Instance]]:
"""Iterates over FilterEnsembles and applies them to instances"""
if hasattr(self, "_filters"):
for f in self._filters:
f.apply(self._instances, None)
else:
eval_logger.warning("No filter defined, passing through instances")
return self._instances
def dump_config(self) -> dict:
"""Returns a dictionary representing the task's config.
:returns: str
The fewshot context.
"""
# TODO: this should only return the overrides applied to a non-YAML task's configuration.
# (num_fewshot)
return self.config.to_dict()
def set_config(self, key: str, value: Any, update: bool = False) -> None:
"""Set or update the configuration for a given key."""
if key is None:
raise ValueError("Key must be provided.")
if update:
current_value = getattr(self._config, key, {})
if not isinstance(current_value, dict):
raise TypeError(f"Expected a dict for key '{key}', got {type(current_value).__name__} instead.")
current_value.update(value)
else:
setattr(self._config, key, value)
def override_metric(self, metric_name: str) -> None:
"""
Override the default metrics used for evaluation with custom metrics.
Parameters:
- metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
"""
(
self._metric_fn_list,
self._aggregation_list,
self._metric_fn_kwargs,
self._higher_is_better,
) = ({}, {}, {}, {})
self._metric_fn_list[metric_name] = get_metric(metric_name)
self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
self._higher_is_better[metric_name] = is_higher_better(metric_name)
self._metric_fn_kwargs[metric_name] = {}
if not isinstance(self, ConfigurableTask):
self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
self.aggregation = lambda: {metric_name: get_metric_aggregation(metric_name)}
setattr(self._config, "metric_list", [{"metric": metric_name}])
setattr(self._config, "process_results", None)
def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
self.fewshot_rnd = random.Random(seed)
if hasattr(self, "sampler"):
self.sampler.rnd = self.fewshot_rnd
@property
def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
if self.has_test_docs():
return self.test_docs()
elif self.has_validation_docs():
return self.validation_docs()
else:
raise ValueError(f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!")
def doc_iterator(self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1) -> Iterator[Tuple[int, Any]]:
limit = int(limit) if limit else None
doc_iterator = utils.create_iterator(
enumerate(self.eval_docs),
rank=int(rank),
limit=limit,
world_size=int(world_size),
)
return doc_iterator
class ConfigurableTask(Task):
VERSION = "Yaml"
OUTPUT_TYPE = None
CONFIG = None
def __init__(
self,
data_dir=None,
cache_dir=None,
download_mode=None,
config: Optional[dict] = None,
model_name: Optional[str] = None,
) -> None: # TODO no super() call here
# Get pre-configured attributes
self._config = self.CONFIG
# Use new configurations if there was no preconfiguration
if self.config is None:
self._config = TaskConfig(**config)
# Overwrite configs
else:
if config is not None:
self._config.__dict__.update(config)
if self.config is None:
raise ValueError("Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg")
if isinstance(self.config.metadata, dict):
if "version" in self.config.metadata:
self.VERSION = self.config.metadata["version"]
self.model_name = model_name
self._prepare_model_specific_config()
if self.config.output_type is not None:
if self.config.output_type not in ALL_OUTPUT_TYPES:
raise ValueError(f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'")
self.OUTPUT_TYPE = self.config.output_type
if self.config.dataset_path is not None:
self.DATASET_PATH = self.config.dataset_path
if self.config.dataset_name is not None:
self.DATASET_NAME = self.config.dataset_name
self._prepare_metric_and_aggregation()
self.download(self.config.dataset_kwargs)
self._training_docs = None
self._fewshot_docs = None
if self.config.filter_list is not None:
self._filters = []
for filter_config in self.config.filter_list:
for filter_pipeline in filter_config:
filter_name = filter_config["name"]
filter_functions = filter_config["filter"]
components = []
for function in filter_functions:
kwargs = {key: function[key] for key in function if key != "function"}
components.append([function["function"], kwargs])
filter_pipeline = build_filter_ensemble(filter_name, components)
self._filters.append(filter_pipeline)
else:
self._filters = [build_filter_ensemble("none", [["take_first", None]])]
if self.config.fewshot_config is not None:
self.sampler = samplers.get_sampler(self.config.fewshot_config.get("sampler", "default") if self.config.fewshot_config else "default")(list(self.fewshot_docs()), self, rnd=random.Random(1234))
if self.has_test_docs():
self.task_docs = self.test_docs()
elif self.has_validation_docs():
self.task_docs = self.validation_docs()
else:
assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
# Test One Doc
self.features = list(self.task_docs.features.keys())
self.multiple_input = 0
self.multiple_target = 0
test_doc = self.task_docs[0]
test_text = self.doc_to_text(test_doc)
test_target = self.doc_to_target(test_doc)
if self.config.doc_to_choice is not None:
test_choice = self.doc_to_choice(test_doc)
if type(test_choice) is not list:
eval_logger.error("doc_to_choice must return list")
else:
num_choice = len(test_choice)
if type(test_text) is int:
self.multiple_input = num_choice
else:
test_choice = None
if type(test_target) is list:
self.multiple_target = len(test_target)
else:
if (type(test_target) is int) and (test_choice is not None):
test_target = test_choice[test_target]
else:
test_target = str(test_target)
if test_choice is not None:
check_choices = test_choice
else:
check_choices = [test_target]
if self.config.doc_to_choice is not None:
for choice in check_choices:
choice_has_whitespace = True if choice[0].isspace() else False
delimiter_has_whitespace = True if self.config.target_delimiter.rstrip() != self.config.target_delimiter else False
if delimiter_has_whitespace and choice_has_whitespace:
eval_logger.warning(f'Both target_delimiter and target choice: "{choice}" have whitespace')
elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
eval_logger.warning(f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace')
def _prepare_model_specific_config(self):
self.lmms_eval_specific_kwargs = self.config.lmms_eval_specific_kwargs
if self.lmms_eval_specific_kwargs is not None:
if self.model_name in self.lmms_eval_specific_kwargs:
self.lmms_eval_specific_kwargs = self.lmms_eval_specific_kwargs[self.model_name]
elif "default" in self.lmms_eval_specific_kwargs:
self.lmms_eval_specific_kwargs.update(self.lmms_eval_specific_kwargs.get("default", {}))
elif "dataset" in self.lmms_eval_specific_kwargs:
self.lmms_eval_specific_kwargs.update(self.lmms_eval_specific_kwargs.get("dataset", {}))
self.model_specific_target_kwargs = self.config.model_specific_target_kwargs
if self.model_specific_target_kwargs is not None:
if self.model_name in self.model_specific_target_kwargs:
self.model_specific_target_kwargs = self.model_specific_target_kwargs[self.model_name]
else:
self.model_specific_target_kwargs = self.model_specific_target_kwargs.get("default", None)
self.model_specific_generation_kwargs = self.config.model_specific_generation_kwargs
if self.model_specific_generation_kwargs is not None:
if self.model_name in self.model_specific_generation_kwargs:
self.model_specific_generation_kwargs = self.model_specific_generation_kwargs[self.model_name]
else:
self.model_specific_generation_kwargs = self.model_specific_generation_kwargs.get("default", {})
self.config.generation_kwargs.update(self.model_specific_generation_kwargs)
def _prepare_metric_and_aggregation(self):
self._metric_fn_list = {}
self._metric_fn_kwargs = {}
self._aggregation_list = {}
self._higher_is_better = {}
if self.config.metric_list is None:
# TODO: handle this in TaskConfig.__post_init__ ?
_metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
for metric_name in _metric_list:
self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
self._metric_fn_kwargs[metric_name] = {}
self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
self._higher_is_better[metric_name] = is_higher_better(metric_name)
else:
for metric_config in self.config.metric_list:
assert "metric" in metric_config
metric_name = metric_config["metric"]
kwargs = {key: metric_config[key] for key in metric_config if key not in ["metric", "aggregation", "higher_is_better"]}
if self.config.process_results is not None:
self._metric_fn_list[metric_name] = None
self._metric_fn_kwargs[metric_name] = {}
elif callable(metric_name):
metric_fn = metric_name.__call__
metric_name = metric_name.__name__
self._metric_fn_list[metric_name] = metric_fn
self._metric_fn_kwargs[metric_name] = kwargs
else:
self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
self._metric_fn_kwargs[metric_name] = kwargs
if "aggregation" in metric_config:
agg_name = metric_config["aggregation"]
if type(agg_name) == str:
self._aggregation_list[metric_name] = get_aggregation(agg_name)
elif callable(agg_name):
self._aggregation_list[metric_name] = metric_config["aggregation"]
else:
INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
metric_agg = get_metric_aggregation(metric_name)
eval_logger.warning(f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. " f"using default " f"aggregation={INV_AGG_REGISTRY[metric_agg]}")
self._aggregation_list[metric_name] = metric_agg
if "higher_is_better" in metric_config:
self._higher_is_better[metric_name] = metric_config["higher_is_better"]
else:
eval_logger.warning(f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. " f"using default " f"higher_is_better={is_higher_better(metric_name)}")
self._higher_is_better[metric_name] = is_higher_better(metric_name)
@retry(stop=(stop_after_attempt(5) | stop_after_delay(60)), wait=wait_fixed(2))
def download(self, dataset_kwargs=None) -> None:
# If the dataset is a video dataset,
# Recursively search whether their is a zip and unzip it to the huggingface home
download_config = DownloadConfig()
download_config.max_retries = dataset_kwargs.get("max_retries", 10) if dataset_kwargs is not None else 10
download_config.num_proc = dataset_kwargs.get("num_proc", 8) if dataset_kwargs is not None else 8
download_config.local_files_only = dataset_kwargs.get("local_files_only", False) if dataset_kwargs is not None else False
if dataset_kwargs is not None:
if "From_YouTube" in dataset_kwargs:
def _download_from_youtube(path):
try:
for video in tqdm(self.all_dataset[split]):
video_id = video["videoID"]
target_path = os.path.join(path, f"{video_id}.mp4")
assert shutil.which("yt-dlp") is not None, "yt-dlp must be installed and available in the system's PATH"
command = f"yt-dlp -o {target_path} -f mp4 https://www.youtube.com/watch?v={video_id}"
subprocess.run(command, shell=True)
with open(os.path.join(cache_path, f"{task}_download_status.json"), "w") as f:
f.write(json.dumps({task: "downloaded"}))
except Exception as e:
eval_logger.error(f"Error while downloading {task} data: {e}")
with open(os.path.join(cache_path, f"{task}_download_status.json"), "w") as f:
f.write(json.dumps({task: "not downloaded"}))
hf_home = os.getenv("HF_HOME", "~/.cache/huggingface/")
accelerator = Accelerator()
if accelerator.is_main_process:
dataset_kwargs.pop("From_YouTube")
assert "load_from_disk" not in dataset_kwargs, "load_from_disk must not be True when From_YouTube is True"
self.all_dataset = datasets.load_dataset(
path=self.DATASET_PATH,
name=self.DATASET_NAME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
**dataset_kwargs if dataset_kwargs is not None else {},
)
dataset_kwargs["From_YouTube"] = True
cache_path = snapshot_download(repo_id=self.DATASET_PATH, repo_type="dataset") # download_parquet
split = vars(self.config)["test_split"]
task = vars(self.config)["task"]
video_path = os.path.join(hf_home, task)
if os.path.exists(os.path.join(cache_path, f"{task}_download_status.json")):
download_status = json.load(open(os.path.join(cache_path, f"{task}_download_status.json"), "r"))
if download_status[task] == "downloaded":
eval_logger.info(f"Data for {task} already download!")
else:
eval_logger.info(f"Start downloading YouTube data to {video_path}...")
_download_from_youtube(video_path)
else:
eval_logger.info(f"Start downloading YouTube data to {video_path}...")
_download_from_youtube(video_path)
accelerator.wait_for_everyone()
if "builder_script" in dataset_kwargs:
builder_script = dataset_kwargs["builder_script"]
self.DATASET_PATH = os.path.join(cache_path, builder_script)
dataset_kwargs.pop("builder_script")
downloaded_video_ids = [i.split(".mp4")[0] for i in os.listdir(os.path.expanduser(video_path)) if i.endswith(".mp4")]
# Filtered the existing dataset with the downloaded video ids
self.dataset = datasets.DatasetDict({split: self.all_dataset[split].filter(lambda x: x["videoID"] in downloaded_video_ids)})
self.dataset_no_image = self.dataset
dataset_kwargs.pop("From_YouTube")
return
if "video" in dataset_kwargs and dataset_kwargs["video"]:
hf_home = os.getenv("HF_HOME", "~/.cache/huggingface/")
hf_home = os.path.expanduser(hf_home)
cache_dir = dataset_kwargs["cache_dir"]
cache_dir = os.path.join(hf_home, cache_dir)
accelerator = Accelerator()
if accelerator.is_main_process:
force_download = dataset_kwargs.get("force_download", False)
force_unzip = dataset_kwargs.get("force_unzip", False)
revision = dataset_kwargs.get("revision", "main")
create_link = dataset_kwargs.get("create_link", False)
# If the user already has a cache dir, we skip download the zip files
if not os.path.exists(cache_dir):
cache_path = snapshot_download(repo_id=self.DATASET_PATH, revision=revision, repo_type="dataset", force_download=force_download, etag_timeout=60)
zip_files = glob(os.path.join(cache_path, "**/*.zip"), recursive=True)
tar_files = glob(os.path.join(cache_path, "**/*.tar*"), recursive=True)
else:
zip_files = []
tar_files = []
def unzip_video_data(zip_file):
import os
import zipfile
with zipfile.ZipFile(zip_file, "r") as zip_ref:
for file_info in zip_ref.infolist():
target_path = os.path.join(cache_dir, file_info.filename)
if not os.path.exists(target_path):
zip_ref.extract(file_info, cache_dir)
else:
eval_logger.info(f"Skipping existing file: {target_path}")
eval_logger.info(f"Extracted all files from {zip_file} to {cache_dir}")
def untar_video_data(tar_file):
import tarfile
with tarfile.open(tar_file, "r") as tar_ref:
tar_ref.extractall(cache_dir)
eval_logger.info(f"Extracted all files from {tar_file} to {cache_dir}")
def concat_tar_parts(tar_parts, output_tar):
with open(output_tar, "wb") as out_tar:
from tqdm import tqdm
for part in tqdm(sorted(tar_parts)):
with open(part, "rb") as part_file:
out_tar.write(part_file.read())
eval_logger.info(f"Concatenated parts {tar_parts} into {output_tar}")
# Unzip zip files if needed
if force_unzip or (not os.path.exists(cache_dir) and len(zip_files) > 0):
for zip_file in zip_files:
unzip_video_data(zip_file)
# Concatenate and extract tar files if needed
if force_unzip or (not os.path.exists(cache_dir) and len(tar_files) > 0):
tar_parts_dict = {}
# Group tar parts together
for tar_file in tar_files:
base_name = tar_file.split(".tar")[0]
base_name = re.sub(r"_\d+$", "", base_name)
if base_name not in tar_parts_dict:
tar_parts_dict[base_name] = []
tar_parts_dict[base_name].append(tar_file)
# Concatenate and untar split parts
for base_name, parts in tar_parts_dict.items():
eval_logger.info(f"Extracting following tar files: {parts}")
output_tar = base_name + ".tar"
if not os.path.exists(output_tar):
eval_logger.info(f"Start concatenating tar files")
concat_tar_parts(parts, output_tar)
eval_logger.info(f"Finish concatenating tar files")
if not os.path.exists(os.path.join(cache_dir, os.path.basename(base_name))):
untar_video_data(output_tar)
# Link cache_path to cache_dir if needed.
if create_link:
if not os.path.exists(cache_dir) or os.path.islink(cache_dir):
if os.path.islink(cache_dir):
os.remove(cache_dir)
eval_logger.info(f"Removed existing symbolic link: {cache_dir}")
# Create a new symbolic link
os.symlink(cache_path, cache_dir)
eval_logger.info(f"Symbolic link created successfully: {cache_path} -> {cache_dir}")
accelerator.wait_for_everyone()
dataset_kwargs.pop("cache_dir")
dataset_kwargs.pop("video")
if "builder_script" in dataset_kwargs:
builder_script = dataset_kwargs["builder_script"]
self.DATASET_PATH = os.path.join(cache_path, builder_script)
dataset_kwargs.pop("builder_script")
if "force_download" in dataset_kwargs:
dataset_kwargs.pop("force_download")
if "force_unzip" in dataset_kwargs:
dataset_kwargs.pop("force_unzip")
if "local_files_only" in dataset_kwargs:
dataset_kwargs.pop("local_files_only")
if "create_link" in dataset_kwargs:
dataset_kwargs.pop("create_link")
if dataset_kwargs is not None and "load_from_disk" in dataset_kwargs and dataset_kwargs["load_from_disk"]:
# using local task in offline environment, need to process the online dataset into local format via
# `ds = load_datasets("lmms-lab/MMMU")`
self.dataset = datasets.load_from_disk(dataset_path=self.DATASET_PATH)
else:
self.dataset = datasets.load_dataset(
path=self.DATASET_PATH,
name=self.DATASET_NAME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS,
download_config=download_config,
**dataset_kwargs if dataset_kwargs is not None else {},
)
if self.config.process_docs is not None:
for split in self.dataset:
if split in [self.config.training_split, self.config.validation_split, self.config.test_split, self.config.fewshot_split]:
self.dataset[split] = self.config.process_docs(self.dataset[split])
# copy dataset, remove image features
self.dataset_no_image = self.dataset.copy()
for doc_name in self.dataset_no_image:
remove_cols = []
features = self.dataset_no_image[doc_name].features
# If it is an Image instance or a Sequence of Image instance. Remove it
for feature in features:
if isinstance(features[feature], Image):
remove_cols.append(feature)
elif isinstance(features[feature], Sequence) and isinstance(features[feature].feature, Image):
remove_cols.append(feature)
elif isinstance(features[feature], Audio):
remove_cols.append(feature)
for remove_col in remove_cols:
self.dataset_no_image[doc_name] = self.dataset_no_image[doc_name].remove_columns(remove_col)
def has_training_docs(self) -> bool:
if self.config.training_split is not None:
return True
else:
return False
def has_validation_docs(self) -> bool:
if self.config.validation_split is not None:
return True
else:
return False
def has_test_docs(self) -> bool:
if self.config.test_split is not None:
return True
else:
return False
def training_docs(self) -> datasets.Dataset:
if self.has_training_docs():
return self.dataset[self.config.training_split]
def validation_docs(self) -> datasets.Dataset:
if self.has_validation_docs():
return self.dataset[self.config.validation_split]
def validation_docs_no_media(self) -> datasets.Dataset:
if self.has_validation_docs():
return self.dataset_no_image[self.config.validation_split]
def test_docs(self) -> datasets.Dataset:
if self.has_test_docs():
return self.dataset[self.config.test_split]
def test_docs_no_media(self) -> datasets.Dataset:
if self.has_test_docs():
return self.dataset_no_image[self.config.test_split]
@property
def eval_docs_no_media(self) -> Union[datasets.Dataset, List[dict]]:
if self.has_test_docs():
return self.test_docs_no_media()
elif self.has_validation_docs():
return self.validation_docs_no_media()
else:
raise ValueError(f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!")
def fewshot_docs(self):
if self.config.fewshot_split is not None:
return self.dataset[self.config.fewshot_split]
else:
if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
eval_logger.warning(f"Task '{self.config.task}': " "num_fewshot > 0 but fewshot_split is None. " "using preconfigured rule.")
return super().fewshot_docs()
@utils.positional_deprecated
def fewshot_context(
self,
doc: str,
num_fewshot: int,
system_instruction: Optional[str] = None,
apply_chat_template: bool = False,
fewshot_as_multiturn: bool = False,
chat_template: Optional[Callable] = None,
is_multimodal: bool = False,
) -> str:
"""Returns a fewshot context string that is made up of a prepended description
(if provided), the `num_fewshot` number of examples, and an appended prompt example.
:param doc: str
The document as returned from training_docs, validation_docs, or test_docs.
:param num_fewshot: int
The number of fewshot examples to provide in the returned context string.
:param system_instruction: str
System instruction to be applied to the prompt.
:param apply_chat_template: bool
Whether to apply the chat template to the fewshot context.
:param fewshot_as_multiturn: bool
Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
:param chat_template:
callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
:returns: str
The fewshot context.
"""
if apply_chat_template:
labeled_examples = []
else:
labeled_examples = ""
# get task description
if description := self.config.description:
description = utils.apply_template(self.config.description, doc)
# create system prompt based on the provided system instruction and description
if system_instruction is not None and description:
system_prompt = f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
elif system_instruction is not None:
system_prompt = system_instruction
elif description:
system_prompt = description
else:
system_prompt = ""
# add system prompt if specified
if system_prompt:
if apply_chat_template:
labeled_examples.append({"role": "system", "content": system_prompt})
else:
labeled_examples = system_prompt
# if few-shot - append examples after the system prompt
if num_fewshot > 0:
if is_multimodal is False:
if apply_chat_template:
labeled_examples.extend(self.sampler.get_chat_context(doc, num_fewshot, fewshot_as_multiturn))
else:
labeled_examples += self.sampler.get_context(doc, num_fewshot)
else:
if apply_chat_template:
labeled_examples_text, labeled_examples_multimodal = self.sampler.get_multimodal_chat_context(doc, num_fewshot, fewshot_as_multiturn)
labeled_examples.extend(labeled_examples_text)
else:
labeled_examples_text, labeled_examples_multimodal = self.sampler.get_multimodal_context(doc, num_fewshot)
labeled_examples += labeled_examples_text
example = self.doc_to_text(doc)
if is_multimodal is False:
if apply_chat_template:
if self.multiple_input:
return chat_template(labeled_examples)
if isinstance(example, str):
self.append_target_question(labeled_examples, example, fewshot_as_multiturn)
# for loglikelihood create a list of questions with appended choices
elif isinstance(example, list):
labeled_examples_list = []
# copy chat history for each example and append the answer
for ex in example:
chat = copy.deepcopy(labeled_examples)
self.append_target_question(chat, ex, fewshot_as_multiturn)
labeled_examples_list.append(chat_template(chat))
return labeled_examples_list
# if example is an integer, append the choice or convert to string
elif isinstance(example, int):
if self.config.doc_to_choice is not None:
choices = self.doc_to_choice(doc)
self.append_target_question(labeled_examples, choices[example], fewshot_as_multiturn)
else:
self.append_target_question(labeled_examples, str(example), fewshot_as_multiturn)
# return lm.apply_chat_template(labeled_examples)
return chat_template(labeled_examples)
else:
if self.multiple_input:
return labeled_examples
if isinstance(example, str):
return labeled_examples + example
elif isinstance(example, list):
return [labeled_examples + ex for ex in example]
elif isinstance(example, int):
if self.config.doc_to_choice is not None:
choices = self.doc_to_choice(doc)
return labeled_examples + choices[example]
else:
return labeled_examples + str(example)
else:
if apply_chat_template:
raise NotImplementedError("Multimodal chat template not implemented yet")
else:
if self.multiple_input:
return labeled_examples + "<image> " + example, labeled_examples_multimodal
if isinstance(example, str):
return labeled_examples + "<image> " + example, labeled_examples_multimodal
else:
raise NotImplementedError("Multimodal not implemented yet")
# elif isinstance(example, list):
# return [labeled_examples + ex for ex in example]
# elif isinstance(example, int):
# if self.config.doc_to_choice is not None:
# choices = self.doc_to_choice(doc)
# return labeled_examples + choices[example], labeled_examples_multimodal
# else:
# return labeled_examples + str(example), labeled_examples_multimodal
def apply_filters(self) -> Optional[List[Instance]]:
"""Iterates over FilterEnsembles and applies them to instances"""
if hasattr(self, "_filters"):
for f in self._filters:
f.apply(self._instances, self.task_docs)
else:
eval_logger.warning("No filter defined, passing through instances")
return self._instances
def should_decontaminate(self):
return self.config.should_decontaminate
def doc_to_decontamination_query(self, doc):
if self.config.should_decontaminate:
if self.config.doc_to_decontamination_query is None:
return self.doc_to_text(doc)
else:
doc_to_decontamination_query = self.config.doc_to_decontamination_query
if doc_to_decontamination_query in self.features:
return doc[doc_to_decontamination_query]
elif callable(doc_to_decontamination_query):
return doc_to_decontamination_query(doc)
else:
return ast.literal_eval(utils.apply_template(self.config.doc_to_decontamination_query, doc))
def _process_doc(self, doc):
"""
Override this to process (detokenize, strip, replace, etc.) individual
documents. This can be used in a map over documents of a data split.
E.g. `map(self._process_doc, self.dataset["validation"])`
:return: dict
The processed version of the specified `doc`.
"""
return doc
def doc_to_text(self, doc):
doc_to_text = self.config.doc_to_text
if type(doc_to_text) == int:
return doc_to_text
elif type(doc_to_text) == str:
if doc_to_text in self.features:
# if self.config.doc_to_choice is not None:
# return self.doc_to_choice(doc)[doc[doc_to_text]]
# else:
return doc[doc_to_text]
else:
text_string = utils.apply_template(doc_to_text, doc)
if text_string.isdigit() and self._config.doc_to_choice is not None:
return ast.literal_eval(text_string)
else:
return text_string
elif callable(doc_to_text):
return (
doc_to_text(doc, self.lmms_eval_specific_kwargs)
if self.lmms_eval_specific_kwargs is not None
else doc_to_text(
doc,
)
)
# Used when applying a Promptsource template
elif hasattr(doc_to_text, "apply"):
applied_prompt = doc_to_text.apply(doc)
if len(applied_prompt) == 2:
return applied_prompt[0]
else:
eval_logger.warning("Applied prompt returns empty string")
return self.config.fewshot_delimiter
else:
print(type(doc_to_text))
raise TypeError
def doc_to_target(self, doc: dict) -> Union[int, str, list]:
doc_to_target = self.config.doc_to_target
if type(doc_to_target) == int:
return doc_to_target
elif type(doc_to_target) == str:
if doc_to_target in self.features:
# if self.config.doc_to_choice is not None:
# return self.doc_to_choice(doc)[doc[doc_to_target]]
# else:
return doc[doc_to_target]
else:
target_string = utils.apply_template(doc_to_target, doc)
if target_string.isdigit() and self._config.doc_to_choice is not None:
return ast.literal_eval(target_string)
elif len(target_string) >= 2 and (target_string[0] == "[") and (target_string[-1] == "]"):
try:
return ast.literal_eval(target_string)
except (SyntaxError, ValueError):
return target_string
else:
return target_string
elif type(doc_to_target) == list:
return doc_to_target
elif callable(doc_to_target):
return doc_to_target(doc, self.model_specific_target_kwargs) if self.model_specific_target_kwargs is not None else doc_to_target(doc)
# Used when applying a Promptsource template
elif hasattr(doc_to_target, "apply"):
applied_prompt = doc_to_target.apply(doc)
if len(applied_prompt) == 2:
return applied_prompt[1]
else:
eval_logger.warning("Applied prompt returns empty string")
return self.config.fewshot_delimiter
else:
raise TypeError
def doc_to_visual(self, doc: dict) -> Union[int, str, list]:
self.config.doc_to_visual
if type(self.config.doc_to_visual) == str:
assert self.config.doc_to_visual in self.features
# Single image. Still return a list for consistency.
return [doc[self.config.doc_to_visual]]
elif callable(self.config.doc_to_visual):
return (
self.config.doc_to_visual(doc, self.lmms_eval_specific_kwargs)
if self.lmms_eval_specific_kwargs is not None and len(inspect.signature(self.config.doc_to_visual).parameters) == 2
else self.config.doc_to_visual(
doc,
)
)
else:
# eval_logger.warning("Note that doc_to_visual was called but not set in config. Please check if this is a text-only task.")
return self.config.doc_to_visual
def doc_to_choice(self, doc: Any) -> List[str]:
if self.config.doc_to_choice is None:
eval_logger.error("Note that doc_to_choice was called but not set in config.")
else:
doc_to_choice = self.config.doc_to_choice
if type(doc_to_choice) == str:
if doc_to_choice in self.features:
return doc[doc_to_choice]
else:
return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
elif type(doc_to_choice) == list:
return doc_to_choice
elif type(doc_to_choice) == dict:
return list(doc_to_choice.values())
elif callable(doc_to_choice):
return doc_to_choice(doc)
elif hasattr(doc_to_choice, "get_answer_choices_list"):
return doc_to_choice.get_answer_choices_list(doc)
else:
raise TypeError
def construct_requests(self, doc_id: int, ctx: str, **kwargs) -> Union[List[Instance], Instance]:
split = kwargs.get("metadata").get("split")
# kwargs.pop("split")
if self.OUTPUT_TYPE == "loglikelihood":
arguments = (ctx, self.doc_to_target, self.doc_to_visual, doc_id, self.config.task, split)
elif self.OUTPUT_TYPE == "multiple_choice":
doc = self.dataset[split][doc_id]
choices = self.doc_to_choice(doc)
target_delimiter = self.config.target_delimiter
if self.multiple_input:
# If there are multiple inputs, choices are placed in the ctx
cont = self.doc_to_target(doc)
arguments = [(ctx, f"{target_delimiter}{cont}", self.doc_to_visual, doc_id, self.config.task, split) for ctx in choices]
else:
# Otherwise they are placed in the continuation
arguments = [(ctx, f"{target_delimiter}{cont}", self.doc_to_visual, doc_id, self.config.task, split) for cont in choices]
request_list = [
Instance(
request_type="loglikelihood",
# doc=doc,
arguments=arg,
idx=i,
task_name=self.config.task,
doc_id=doc_id,
**kwargs,
)
for i, arg in enumerate(arguments)
]
# TODO: we should raise a warning telling users this will at most ~2x runtime.
if "acc_mutual_info" in self._metric_fn_list.keys():
# if we are calculating multiple choice accuracy
# using mutual information instead of raw loglikelihood as metric, need unconditional lls.
# here mutual info refers to calculating
# log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
# in other words normalizing by subtracting the unconditional logprob of each choice.
request_list.extend(
[
Instance(
request_type="loglikelihood",
# doc=doc,
arguments=("", "{}".format(choice)),
idx=i,
task_name=self.config.task,
doc_id=doc_id,
**kwargs,
)
for i, choice in enumerate(choices)
]
)
return request_list
elif self.OUTPUT_TYPE == "generate_until":
arguments = (ctx, copy.deepcopy(self.config.generation_kwargs), self.doc_to_visual, doc_id, self.config.task, split)
elif self.OUTPUT_TYPE == "generate_until_multi_round":
arguments = (ctx, copy.deepcopy(self.config.generation_kwargs), self.doc_to_visual, partial(self.config.doc_to_text, lmms_eval_specific_kwargs=self.lmms_eval_specific_kwargs), doc_id, self.config.task, split)
return Instance(request_type=self.OUTPUT_TYPE, arguments=arguments, idx=0, **kwargs)
# TODO: we add a full_docs interface here for some evaluations that needs to access the full datasets during process_results function. we may have better ways to handle this.
@retry(stop=(stop_after_attempt(5) | stop_after_delay(1200)), wait=wait_fixed(2))
def process_results(self, doc, results, full_docs=None):
if self.OUTPUT_TYPE == "generate_until":
if isinstance(results, list) and isinstance(results[0], list):
results = [res.strip() for res in results[0]]
else:
results = [res.strip() for res in results]
kwargs = {}
if full_docs is not None:
kwargs["full_docs"] = full_docs
if callable(self.config.process_results):
return self.config.process_results(doc, results, **kwargs)
result_dict = {}
use_metric = list(self._metric_fn_list.keys())
if self.OUTPUT_TYPE == "loglikelihood":
ll, is_greedy = results
return {
**({"perplexity": ll} if "perplexity" in use_metric else {}),
**({"acc": int(is_greedy)} if "acc" in use_metric else {}),
}
elif self.OUTPUT_TYPE == "multiple_choice":
lls, is_greedy = zip(*results)
# retrieve choices in List[str] form, to compute choice lengths, etc.
choices = self.doc_to_choice(doc)
completion_len = np.array([float(len(i)) for i in choices])
if 2 * len(choices) == len(lls) and "acc_mutual_info" in self._metric_fn_list.keys():
# then we are doing mutual info.
# this stores the "dryrun" / unconditional answer loglikelihoods
lls_unconditional = lls[1::2]
assert len(lls_unconditional) == len(choices)
# and this stores our "regular" conditional loglikelihoods
lls = lls[::2]
# Warning :
# Here may be different from original lm-eval
# since we return the actual loss in many model loglikelihood
# we just use the argmin here
pred = np.argmin(lls)
pred_norm = np.argmin(lls / completion_len)
if self.multiple_input:
gold = self.doc_to_text(doc)
else:
gold = self.doc_to_target(doc)
gold_index_error = False
if type(gold) is list:
gold = [i if i < len(choices) else -100 for i in gold]
if -100 in gold:
gold_index_error = True
else:
if type(gold) is int:
gold = gold if gold < len(choices) else -100
elif type(gold) is str:
gold = choices.index(gold) if gold in choices else -100
if gold == -100:
gold_index_error = True
if gold_index_error:
eval_logger.warning(f"Label index was not in within range of available choices," f"Sample:\n\n{doc}\n\n")
if self.multiple_target:
acc = 1.0 if pred in gold else 0.0
acc_norm = 1.0 if pred_norm in gold else 0.0
exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
else:
acc = 1.0 if pred == gold else 0.0
acc_norm = 1.0 if pred_norm == gold else 0.0
# TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
exact_match = int(is_greedy[gold]) if gold != -100 else 0
result_dict = {
**({"acc": acc} if "acc" in use_metric else {}),
**({"f1": (gold, pred)} if "f1" in use_metric else {}),
**({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
**({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
**({"exact_match": exact_match} if "exact_match" in use_metric else {}),
}
if "acc_mutual_info" in use_metric:
lls_mutual_info = [ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)]
acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
result_dict["acc_mutual_info"] = acc_mutual_info
elif "generate_until" in self.OUTPUT_TYPE:
gold = self.doc_to_target(doc)
result = [res.strip() for res in results]
if self.config.doc_to_choice is not None:
# If you set doc_to_choice,
# it assumes that doc_to_target returns a number.
choices = self.doc_to_choice(doc)
gold = choices[gold]
# we expect multiple_targets to be a list.
elif self.multiple_target:
gold = list(gold)
# elif type(gold) != type(result):
# # cast gold to the same type as result
# gold = type(result)(gold)
for metric in self._metric_fn_list.keys():
if self.multiple_target and metric != "anls":
# in the case where we have multiple targets,
# return true if any are true
# TODO: this may break for multipLe_target, non zero-or-1 metrics
scores = []
if not isinstance(gold, list):
# sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
# print(gold)
gold = [gold]
for gold_option in gold:
try:
result_score = self._metric_fn_list[metric](
references=[gold_option],
predictions=result,
**self._metric_fn_kwargs[metric],
)
except TypeError: # TODO: this is hacky and I don't want to do it
result_score = self._metric_fn_list[metric]([gold_option, result])
if isinstance(result_score, dict):
# TODO: this handles the case where HF evaluate returns a dict.
result_score = result_score[metric]
scores.append(result_score)
if any(scores):
result_score = 1.0
else:
result_score = 0.0
else:
if not isinstance(gold, list):
gold = [gold]
try:
result_score = self._metric_fn_list[metric](
references=gold,
predictions=result,
**self._metric_fn_kwargs[metric],
)
except TypeError: # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
result_score = self._metric_fn_list[metric]([gold, result])
if isinstance(result_score, dict):
# TODO: this handles the case where HF evaluate returns a dict.
result_score = result_score[metric]
result_dict[metric] = result_score
else:
raise ValueError(
f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
"'loglikelihood','generate_until', 'generate_until_multi_round', or 'multiple_choice'",
)
return result_dict
def aggregation(self):
return self._aggregation_list
def higher_is_better(self):
return self._higher_is_better
def get_config(self, key: str) -> Any:
return getattr(self._config, key, None)
@property
def task_name(self) -> Any:
return getattr(self.config, "task", None)
def __repr__(self):
return f"ConfigurableTask(task_name={getattr(self.config, 'task', None)}," f"output_type={self.OUTPUT_TYPE}," f"num_fewshot={getattr(self.config, 'num_fewshot', None)}," f"num_samples={len(self.eval_docs)})"
class ConfigurableMessagesTask(ConfigurableTask):
def __init__(self, data_dir=None, cache_dir=None, download_mode=None, config=None, model_name=None):
super().__init__(data_dir, cache_dir, download_mode, config, model_name)
def doc_to_messages(self, doc: dict) -> Union[int, str, list]:
if callable(self.config.doc_to_messages):
return (
self.config.doc_to_messages(doc, self.lmms_eval_specific_kwargs)
if self.lmms_eval_specific_kwargs is not None and len(inspect.signature(self.config.doc_to_messages).parameters) == 2
else self.config.doc_to_messages(
doc,
)
)
elif self.config.doc_to_messages is None and (self.config.doc_to_visual is not None or self.config.doc_to_text is not None):
# An auto doc to messages function
def auto_doc_to_messages(doc):
visuals = self.doc_to_visual(doc)
if visuals is None:
visuals = []
text = self.doc_to_text(doc)
messages = [{"role": "user", "content": []}]
content = []
for visual in visuals:
if isinstance(visual, PIL_Image.Image):
content.append({"type": "image", "url": visual})
elif isinstance(visual, dict):
content.append({"type": "audio", "url": visual})
elif isinstance(visual, str):
content.append({"type": "video", "url": visual})
content.append({"type": "text", "text": text})
messages[0]["content"] = content
return messages
return auto_doc_to_messages(doc)
else:
# eval_logger.warning("Note that doc_to_visual was called but not set in config. Please check if this is a text-only task.")
return self.config.doc_to_messages
def construct_requests(self, doc_id: int, ctx: str, **kwargs) -> Union[List[Instance], Instance]:
split = kwargs.get("metadata").get("split")
# kwargs.pop("split")
assert self.OUTPUT_TYPE == "generate_until", "Currently messages is used for generation only"
arguments = (ctx, self.doc_to_messages, copy.deepcopy(self.config.generation_kwargs), doc_id, self.config.task, split)
return Instance(request_type=self.OUTPUT_TYPE, arguments=arguments, idx=0, task_name=self.config.task, doc_id=doc_id, **kwargs)
def __repr__(self):
return f"ConfigurableMessagesTask(task_name={getattr(self.config, 'task', None)}," f"output_type={self.OUTPUT_TYPE}," f"num_fewshot={getattr(self.config, 'num_fewshot', None)}," f"num_samples={len(self.eval_docs)})"