|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
from dataclasses import dataclass |
|
|
from typing import Any |
|
|
|
|
|
import fire |
|
|
import torch |
|
|
from peft import PeftModel |
|
|
from torch.utils.data import Dataset |
|
|
from transformers import DataCollatorForSeq2Seq, Qwen2_5_VLProcessor |
|
|
|
|
|
from llamafactory.extras.constants import IGNORE_INDEX |
|
|
from llamafactory.hparams import get_train_args |
|
|
from llamafactory.model import load_model, load_tokenizer |
|
|
from llamafactory.train.callbacks import LogCallback |
|
|
from llamafactory.train.sft.trainer import CustomSeq2SeqTrainer |
|
|
|
|
|
|
|
|
class DummyDataset(Dataset): |
|
|
def __init__(self, size: int = 1000, seq_length: int = 1024, processor: Qwen2_5_VLProcessor = None): |
|
|
self.size = size |
|
|
self.seq_length = seq_length |
|
|
self.vocab_size = 32768 |
|
|
self.processor = processor |
|
|
|
|
|
image_token_num = 18 * 18 // (2 * 2) |
|
|
image_t = 2 |
|
|
|
|
|
self.text_seqlen = seq_length // 4 |
|
|
video_seq_length = self.seq_length - self.text_seqlen - image_t * image_token_num |
|
|
video_t = video_seq_length // image_token_num |
|
|
|
|
|
self.image_size = [18 * 18 * image_t, 1176] |
|
|
self.image_grid_thw = torch.tensor([[1, 18, 18]] * image_t, dtype=torch.long) |
|
|
self.image_seqlen = image_t * image_token_num |
|
|
|
|
|
self.video_size = [18 * 18 * video_t, 1176] |
|
|
self.video_grid_thw = torch.tensor([[video_t, 18, 18]], dtype=torch.long) |
|
|
self.video_seqlen = video_t * image_token_num |
|
|
|
|
|
def __len__(self): |
|
|
return self.size |
|
|
|
|
|
def __getitem__(self, index: int): |
|
|
input_ids = torch.randint(low=0, high=self.vocab_size, size=(self.seq_length,)) |
|
|
input_ids[: self.image_seqlen] = self.processor.image_token_id |
|
|
input_ids[self.image_seqlen : self.image_seqlen + self.video_seqlen] = self.processor.video_token_id |
|
|
|
|
|
attention_mask = torch.ones((self.seq_length,), dtype=torch.long) |
|
|
labels = input_ids.clone() |
|
|
labels[: self.image_seqlen + self.video_seqlen] = IGNORE_INDEX |
|
|
pixel_values = torch.rand(self.image_size, dtype=torch.float32) |
|
|
pixel_values_videos = torch.rand(self.video_size, dtype=torch.float32) |
|
|
return { |
|
|
"input_ids": input_ids, |
|
|
"attention_mask": attention_mask, |
|
|
"labels": labels, |
|
|
"pixel_values": pixel_values, |
|
|
"pixel_values_videos": pixel_values_videos, |
|
|
"image_grid_thw": self.image_grid_thw, |
|
|
"video_grid_thw": self.video_grid_thw, |
|
|
} |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq): |
|
|
def __post_init__(self): |
|
|
if isinstance(self.model, PeftModel): |
|
|
self.model = self.model.base_model.model |
|
|
|
|
|
if self.model is not None and hasattr(self.model, "get_rope_index"): |
|
|
self.get_rope_func = self.model.get_rope_index |
|
|
elif self.model is not None and hasattr(self.model, "model") and hasattr(self.model.model, "get_rope_index"): |
|
|
self.get_rope_func = self.model.model.get_rope_index |
|
|
else: |
|
|
self.get_rope_func = None |
|
|
|
|
|
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]: |
|
|
batch_pixel_values = [feature.pop("pixel_values") for feature in features] |
|
|
batch_pixel_values_videos = [feature.pop("pixel_values_videos") for feature in features] |
|
|
batch_image_grid_thw = [feature.pop("image_grid_thw") for feature in features] |
|
|
batch_video_grid_thw = [feature.pop("video_grid_thw") for feature in features] |
|
|
|
|
|
batch: dict[str, torch.Tensor] = super().__call__(features) |
|
|
|
|
|
batch["pixel_values"] = torch.cat(batch_pixel_values, dim=0) |
|
|
batch["pixel_values_videos"] = torch.cat(batch_pixel_values_videos, dim=0) |
|
|
batch["image_grid_thw"] = torch.cat(batch_image_grid_thw, dim=0) |
|
|
batch["video_grid_thw"] = torch.cat(batch_video_grid_thw, dim=0) |
|
|
|
|
|
if self.get_rope_func is not None: |
|
|
rope_index_kwargs = { |
|
|
"input_ids": batch["input_ids"], |
|
|
"image_grid_thw": batch["image_grid_thw"], |
|
|
"video_grid_thw": batch["video_grid_thw"], |
|
|
"attention_mask": (batch["attention_mask"] >= 1).float(), |
|
|
} |
|
|
batch["position_ids"], batch["rope_deltas"] = self.get_rope_func(**rope_index_kwargs) |
|
|
|
|
|
if "position_ids" not in batch or batch["position_ids"].dim() != 3: |
|
|
raise ValueError("Qwen2VL requires 3D position ids for mrope.") |
|
|
|
|
|
return batch |
|
|
|
|
|
|
|
|
def bench_qwen( |
|
|
model_name_or_path: str = "Qwen/Qwen2-VL-7B-Instruct", |
|
|
batch_size: int = 1, |
|
|
seq_length: int = 2048, |
|
|
liger_kernel: bool = False, |
|
|
deepspeed_stage: int = 3, |
|
|
): |
|
|
os.environ["LLAMABOARD_ENABLED"] = "true" |
|
|
os.environ["LLAMABOARD_WORKDIR"] = "output/dummy_dir" |
|
|
args = { |
|
|
"model_name_or_path": model_name_or_path, |
|
|
"enable_liger_kernel": liger_kernel, |
|
|
"stage": "sft", |
|
|
"do_train": True, |
|
|
"finetuning_type": "full", |
|
|
"dataset": "alpaca_en_demo", |
|
|
"template": "qwen2_vl", |
|
|
"cutoff_len": seq_length, |
|
|
"output_dir": "output/dummy_dir", |
|
|
"logging_steps": 10, |
|
|
"save_strategy": "no", |
|
|
"save_only_model": True, |
|
|
"overwrite_output_dir": True, |
|
|
"per_device_train_batch_size": batch_size, |
|
|
"max_steps": 1000, |
|
|
"bf16": True, |
|
|
"include_num_input_tokens_seen": True, |
|
|
"report_to": "none", |
|
|
} |
|
|
if deepspeed_stage in [2, 3]: |
|
|
args["deepspeed"] = f"examples/deepspeed/ds_z{deepspeed_stage}_config.json" |
|
|
|
|
|
model_args, _, training_args, finetuning_args, _ = get_train_args(args) |
|
|
tokenizer_module = load_tokenizer(model_args) |
|
|
tokenizer = tokenizer_module["tokenizer"] |
|
|
trainset = DummyDataset(size=100000, seq_length=seq_length, processor=tokenizer_module["processor"]) |
|
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) |
|
|
data_collator = MultiModalDataCollatorForSeq2Seq( |
|
|
tokenizer=tokenizer, model=model, pad_to_multiple_of=8, label_pad_token_id=IGNORE_INDEX |
|
|
) |
|
|
|
|
|
trainer = CustomSeq2SeqTrainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
finetuning_args=finetuning_args, |
|
|
data_collator=data_collator, |
|
|
callbacks=[LogCallback()], |
|
|
train_dataset=trainset, |
|
|
**tokenizer_module, |
|
|
) |
|
|
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
fire.Fire(bench_qwen) |
|
|
|