Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- de
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: automatic-speech-recognition
|
7 |
+
model-index:
|
8 |
+
- name: whisper-large-v3-turbo-german by Florian Zimmermeister @primeLine
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: automatic-speech-recognition
|
12 |
+
name: Speech Recognition
|
13 |
+
dataset:
|
14 |
+
name: German ASR Data-Mix
|
15 |
+
type: flozi00/asr-german-mixed
|
16 |
+
metrics:
|
17 |
+
- type: wer
|
18 |
+
value: 4.77 %
|
19 |
+
name: Test WER
|
20 |
+
datasets:
|
21 |
+
- flozi00/asr-german-mixed
|
22 |
+
- flozi00/asr-german-mixed-evals
|
23 |
+
base_model:
|
24 |
+
- primeline/whisper-large-v3-german
|
25 |
+
---
|
26 |
+
## Quant
|
27 |
+
|
28 |
+
This is only a int8 quantization from primeline/whisper-large-v3-german per ctranslate2-converter, for usage e.g. in ctranslate2, faster-whisper, etc.
|
29 |
+
|
30 |
+
## Modelcard from primeline/whisper-large-v3-german
|
31 |
+
|
32 |
+
|
33 |
+
### Summary
|
34 |
+
This model map provides information about a model based on Whisper Large v3 that has been fine-tuned for speech recognition in German. Whisper is a powerful speech recognition platform developed by OpenAI. This model has been specially optimized for processing and recognizing German speech.
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
### Applications
|
39 |
+
This model can be used in various application areas, including
|
40 |
+
|
41 |
+
- Transcription of spoken German language
|
42 |
+
- Voice commands and voice control
|
43 |
+
- Automatic subtitling for German videos
|
44 |
+
- Voice-based search queries in German
|
45 |
+
- Dictation functions in word processing programs
|
46 |
+
|
47 |
+
|
48 |
+
## Model family
|
49 |
+
|
50 |
+
| Model | Parameters | link |
|
51 |
+
|----------------------------------|------------|--------------------------------------------------------------|
|
52 |
+
| Whisper large v3 german | 1.54B | [link](https://huggingface.co/primeline/whisper-large-v3-german) |
|
53 |
+
| Whisper large v3 turbo german | 809M | [link](https://huggingface.co/primeline/whisper-large-v3-turbo-german)
|
54 |
+
| Distil-whisper large v3 german | 756M | [link](https://huggingface.co/primeline/distil-whisper-large-v3-german) |
|
55 |
+
| tiny whisper | 37.8M | [link](https://huggingface.co/primeline/whisper-tiny-german) |
|
56 |
+
|
57 |
+
|
58 |
+
## Evaluations
|
59 |
+
|
60 |
+
| Dataset | openai-whisper-large-v3-turbo | openai-whisper-large-v3 | primeline-whisper-large-v3-german | nyrahealth-CrisperWhisper | primeline-whisper-large-v3-turbo-german |
|
61 |
+
|---------------------------------|-------------------------------|-------------------------|----------------------------------|---------------------------|----------------------------------------|
|
62 |
+
| common_voice_19_0 | 6.31 | 5.84 | 4.30 | **4.14** | 4.28 |
|
63 |
+
| Tuda-De | 11.45 | 11.21 | 9.89 | 13.88 | **8.10** |
|
64 |
+
| multilingual librispeech | 18.03 | 17.69 | 13.46 | 10.10 | **4.71** |
|
65 |
+
| All | 14.16 | 13.79 | 10.51 | 8.48 | **4.75** |
|
66 |
+
|
67 |
+
|
68 |
+
### Training data
|
69 |
+
The training data for this model includes a large amount of spoken German from various sources. The data was carefully selected and processed to optimize recognition performance.
|
70 |
+
|
71 |
+
|
72 |
+
### Training process
|
73 |
+
The training of the model was performed with the following hyperparameters
|
74 |
+
|
75 |
+
- Batch size: 12288
|
76 |
+
- Epochs: 3
|
77 |
+
- Learning rate: 1e-6
|
78 |
+
- Data augmentation: No
|
79 |
+
- Optimizer: [Ademamix](https://arxiv.org/abs/2409.03137)
|
80 |
+
|
81 |
+
|
82 |
+
### How to use
|
83 |
+
|
84 |
+
```python
|
85 |
+
import torch
|
86 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
87 |
+
from datasets import load_dataset
|
88 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
89 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
90 |
+
model_id = "primeline/whisper-large-v3-turbo-german"
|
91 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
92 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
93 |
+
)
|
94 |
+
model.to(device)
|
95 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
96 |
+
pipe = pipeline(
|
97 |
+
"automatic-speech-recognition",
|
98 |
+
model=model,
|
99 |
+
tokenizer=processor.tokenizer,
|
100 |
+
feature_extractor=processor.feature_extractor,
|
101 |
+
max_new_tokens=128,
|
102 |
+
chunk_length_s=30,
|
103 |
+
batch_size=16,
|
104 |
+
return_timestamps=True,
|
105 |
+
torch_dtype=torch_dtype,
|
106 |
+
device=device,
|
107 |
+
)
|
108 |
+
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
109 |
+
sample = dataset[0]["audio"]
|
110 |
+
result = pipe(sample)
|
111 |
+
print(result["text"])
|
112 |
+
```
|
113 |
+
|
114 |
+
|
115 |
+
## [About us](https://primeline-ai.com/en/)
|
116 |
+
|
117 |
+
[![primeline AI](https://primeline-ai.com/wp-content/uploads/2024/02/pl_ai_bildwortmarke_original.svg)](https://primeline-ai.com/en/)
|
118 |
+
|
119 |
+
|
120 |
+
Your partner for AI infrastructure in Germany <br>
|
121 |
+
Experience the powerful AI infrastructure that drives your ambitions in Deep Learning, Machine Learning & High-Performance Computing. Optimized for AI training and inference.
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
Model author: [Florian Zimmermeister](https://huggingface.co/flozi00)
|