update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: facebook/mms-1b-all
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-large-mms-1b-nya-colab
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-large-mms-1b-nya-colab
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4327
|
21 |
+
- Wer: 0.3505
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.001
|
41 |
+
- train_batch_size: 4
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 8
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 100
|
49 |
+
- num_epochs: 15
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 4.1659 | 0.2 | 200 | 0.6822 | 0.5353 |
|
56 |
+
| 0.2331 | 0.39 | 400 | 0.5220 | 0.4493 |
|
57 |
+
| 0.2119 | 0.59 | 600 | 0.4967 | 0.4146 |
|
58 |
+
| 0.1995 | 0.79 | 800 | 0.5021 | 0.4025 |
|
59 |
+
| 0.1812 | 0.99 | 1000 | 0.5046 | 0.3979 |
|
60 |
+
| 0.1744 | 1.18 | 1200 | 0.4786 | 0.3884 |
|
61 |
+
| 0.1783 | 1.38 | 1400 | 0.4630 | 0.3786 |
|
62 |
+
| 0.1663 | 1.58 | 1600 | 0.4511 | 0.3634 |
|
63 |
+
| 0.1609 | 1.77 | 1800 | 0.4656 | 0.3647 |
|
64 |
+
| 0.1632 | 1.97 | 2000 | 0.4254 | 0.3553 |
|
65 |
+
| 0.1568 | 2.17 | 2200 | 0.4326 | 0.3529 |
|
66 |
+
| 0.1544 | 2.37 | 2400 | 0.4291 | 0.3477 |
|
67 |
+
| 0.1524 | 2.56 | 2600 | 0.4327 | 0.3505 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.31.0.dev0
|
73 |
+
- Pytorch 2.0.1+cu118
|
74 |
+
- Datasets 2.13.1
|
75 |
+
- Tokenizers 0.13.3
|