csikasote commited on
Commit
e64a637
1 Parent(s): 260ead2

Model save

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: facebook/mms-1b-all
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: mms-1b-nyagen-combined-model
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # mms-1b-nyagen-combined-model
18
+
19
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1767
22
+ - Wer: 0.2447
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0003
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 100
48
+ - num_epochs: 30.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:------:|:----:|:---------------:|:------:|
55
+ | 6.9978 | 0.1364 | 100 | 0.6384 | 0.5015 |
56
+ | 0.482 | 0.2729 | 200 | 0.2777 | 0.3713 |
57
+ | 0.3907 | 0.4093 | 300 | 0.2484 | 0.3481 |
58
+ | 0.3782 | 0.5457 | 400 | 0.2290 | 0.3232 |
59
+ | 0.3316 | 0.6821 | 500 | 0.2222 | 0.3148 |
60
+ | 0.3158 | 0.8186 | 600 | 0.2127 | 0.3042 |
61
+ | 0.3199 | 0.9550 | 700 | 0.2106 | 0.2932 |
62
+ | 0.3223 | 1.0914 | 800 | 0.2013 | 0.2826 |
63
+ | 0.3075 | 1.2278 | 900 | 0.1975 | 0.2709 |
64
+ | 0.3015 | 1.3643 | 1000 | 0.1942 | 0.2762 |
65
+ | 0.3049 | 1.5007 | 1100 | 0.1895 | 0.2729 |
66
+ | 0.3029 | 1.6371 | 1200 | 0.1888 | 0.2718 |
67
+ | 0.2626 | 1.7735 | 1300 | 0.1866 | 0.2683 |
68
+ | 0.2803 | 1.9100 | 1400 | 0.1830 | 0.2615 |
69
+ | 0.2725 | 2.0464 | 1500 | 0.1814 | 0.2626 |
70
+ | 0.2732 | 2.1828 | 1600 | 0.1783 | 0.2641 |
71
+ | 0.249 | 2.3192 | 1700 | 0.1828 | 0.2560 |
72
+ | 0.2423 | 2.4557 | 1800 | 0.1762 | 0.2480 |
73
+ | 0.2668 | 2.5921 | 1900 | 0.1732 | 0.2458 |
74
+ | 0.2653 | 2.7285 | 2000 | 0.1727 | 0.2460 |
75
+ | 0.2614 | 2.8649 | 2100 | 0.1749 | 0.2533 |
76
+ | 0.2474 | 3.0014 | 2200 | 0.1733 | 0.2438 |
77
+ | 0.2317 | 3.1378 | 2300 | 0.1767 | 0.2447 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.48.0.dev0
83
+ - Pytorch 2.5.1+cu124
84
+ - Datasets 3.2.0
85
+ - Tokenizers 0.21.0