abhik1505040
commited on
Commit
·
5e8e929
1
Parent(s):
f77f9fb
Initial commit
Browse files- README.md +52 -0
- config.json +25 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- bn
|
4 |
+
licenses:
|
5 |
+
- cc-by-nc-sa-4.0
|
6 |
+
---
|
7 |
+
|
8 |
+
# BanglaBERT
|
9 |
+
|
10 |
+
This repository contains the pretrained discriminator checkpoint of the model **BanglaBERT**. This is an [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) discriminator model pretrained with the Replaced Token Detection (RTD) objective. Finetuned models using this checkpoint achieve state-of-the-art results on many of the NLP tasks in bengali.
|
11 |
+
|
12 |
+
For finetuning on different downstream tasks such as `Sentiment classification`, `Named Entity Recognition`, `Natural Language Inference` etc., refer to the scripts in the official [repository](https://https://github.com/csebuetnlp/banglabert).
|
13 |
+
|
14 |
+
## Using this model as a discriminator in `transformers` (tested on 4.11.0.dev0)
|
15 |
+
|
16 |
+
```python
|
17 |
+
from transformers import ElectraForPreTraining, ElectraTokenizerFast
|
18 |
+
from normalizer import normalize # pip install git+https://github.com/abhik1505040/normalizer
|
19 |
+
import torch
|
20 |
+
|
21 |
+
model = ElectraForPreTraining.from_pretrained("banglabert")
|
22 |
+
tokenizer = ElectraTokenizerFast.from_pretrained("banglabert")
|
23 |
+
|
24 |
+
original_sentence = "আমি কৃতজ্ঞ কারণ আপনি আমার জন্য অনেক কিছু করেছেন।"
|
25 |
+
fake_sentence = "আমি হতাশ কারণ আপনি আমার জন্য অনেক কিছু করেছেন।"
|
26 |
+
fake_sentence = normalize(fake_sentence) # this normalization step is required before tokenizing the text
|
27 |
+
|
28 |
+
fake_tokens = tokenizer.tokenize(fake_sentence)
|
29 |
+
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
|
30 |
+
discriminator_outputs = model(fake_inputs).logits
|
31 |
+
predictions = torch.round((torch.sign(discriminator_outputs) + 1) / 2)
|
32 |
+
|
33 |
+
[print("%7s" % token, end="") for token in fake_tokens]
|
34 |
+
print("\n" + "-" * 50)
|
35 |
+
[print("%7s" % int(prediction), end="") for prediction in predictions.squeeze().tolist()[1:-1]]
|
36 |
+
print("\n" + "-" * 50)
|
37 |
+
```
|
38 |
+
|
39 |
+
## Citation
|
40 |
+
|
41 |
+
If you use this model, please cite the following paper:
|
42 |
+
```
|
43 |
+
@misc{bhattacharjee2021banglabert,
|
44 |
+
title={BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding},
|
45 |
+
author={Abhik Bhattacharjee and Tahmid Hasan and Kazi Samin and Md Saiful Islam and M. Sohel Rahman and Anindya Iqbal and Rifat Shahriyar},
|
46 |
+
year={2021},
|
47 |
+
eprint={2101.00204},
|
48 |
+
archivePrefix={arXiv},
|
49 |
+
primaryClass={cs.CL}
|
50 |
+
}
|
51 |
+
```
|
52 |
+
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ElectraForPreTraining"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"embedding_size": 768,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "electra",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"summary_activation": "gelu",
|
19 |
+
"summary_last_dropout": 0.1,
|
20 |
+
"summary_type": "first",
|
21 |
+
"summary_use_proj": true,
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"vocab_size": 32000
|
24 |
+
}
|
25 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d33f519f42705d54e65fc1601644a6f4562c3462f96943b32b4184536130f98
|
3 |
+
size 442560329
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "tokenize_chinese_chars": false, "special_tokens_map_file": null, "full_tokenizer_file": null}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|