First lunar lander model.
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: MlpPolicy
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 239.84 +/- 22.20
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **MlpPolicy** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bea5f21e440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bea5f21e4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bea5f21e560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bea5f21e5f0>", "_build": "<function ActorCriticPolicy._build at 0x7bea5f21e680>", "forward": "<function ActorCriticPolicy.forward at 0x7bea5f21e710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bea5f21e7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bea5f21e830>", "_predict": "<function ActorCriticPolicy._predict at 0x7bea5f21e8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bea5f21e950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bea5f21e9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bea5f21ea70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bea01ef23c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733500264165153461, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbmZjwUWK+67soZu85p/TZk/Pa47ShgtgAAgD8AAIA/pl3pPdRclD+zMAI/b1vovhHVYjz62/c9AAAAAAAAAAA91a0+yfyIP6NSa72NfF++pGEBPsjM570AAAAAAAAAAPP1kD1cB1C67WTOOvwjtzVHCwM75mbzuQAAgD8AAIA/ih+gPrTFSj9Hvcm9c2RxvlwZtz3ScvO8AAAAAAAAAABm/4w9nXA6P/B9bL0+P3m+28VTPMNtar0AAAAAAAAAAI2hIz6hooi8tmzZufc07jcKhPG9W54TOQAAgD8AAIA/mv0NPVxLWrpK3d+57SXBtGIoY7kmogM5AACAPwAAgD/zYIY9oXagPdNWhb073nK+9k7+vHkWAD0AAAAAAAAAAGYf07xI57S6HtNkunIt5LUO1Zc35r2COQAAgD8AAIA/s5cXPVybQLquzs26WtlqtsTX2DpSDO45AACAPwAAgD8aZSE9FEyLunK98ru+kUo4rysCOiIkczcAAIA/AACAPxovVr2onWA/0boUPV+ig77QGXe8YU6vvQAAAAAAAAAAcx3BPeEagrrthTu5VV4otIezLruY4Vo4AACAPwAAgD8AxKa8VeM8PoV+ajz2j0m+RCLbvCJ+r7wAAAAAAAAAAGY8hzxch066UT+yOdQ7Xbae5/G6fSlatQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF2tOf/WDpWMAWyUTegDjAF0lEdAlPIU0rK/23V9lChoBkdAZR2l54W1t2gHTegDaAhHQJT2JjG1hLJ1fZQoaAZHQGK8khq0tyxoB03oA2gIR0CU/a0bLlmwdX2UKGgGR0A+vzzVc2R8aAdNDAFoCEdAlP7SGN70F3V9lChoBkdAZEVzSThYNmgHTegDaAhHQJUK3efqX4V1fZQoaAZHQGBO3zMA3kxoB03oA2gIR0CVDM9nK4hEdX2UKGgGR0Bjfqtq59VnaAdN6ANoCEdAlQ7joMa0hXV9lChoBkdAYXOkcjqv/2gHTegDaAhHQJUQ545cTrV1fZQoaAZHQGTL/3nIQvpoB03oA2gIR0CVEWgX/HYIdX2UKGgGR0Blm3WrfcesaAdN6ANoCEdAlRNOm78Nx3V9lChoBkdAZI5QJokAxWgHTegDaAhHQJUT6iJwbVB1fZQoaAZHQGIOLGza9K5oB03oA2gIR0CVGoCK77KrdX2UKGgGR0Bhagw0waisaAdN6ANoCEdAlSjhRQ79ynV9lChoBkdAYcmmReTmn2gHTegDaAhHQJVDOdJ8OTd1fZQoaAZHQGF2FwkxASpoB03oA2gIR0CVRDUS7GvPdX2UKGgGR0BjNPmq5sj3aAdN6ANoCEdAlURSeumrKnV9lChoBkdAZIKuvECNj2gHTegDaAhHQJVEwC6pYLd1fZQoaAZHQGe3/4IrvstoB03oA2gIR0CVSHyCnP3SdX2UKGgGR0ByWtv/BFd+aAdN5AFoCEdAlUuwV0tAcHV9lChoBkdAY2IV0tAcDWgHTegDaAhHQJVRMX2ugYh1fZQoaAZHQGeeAu7HyVhoB03oA2gIR0CVUnhegL7XdX2UKGgGR0BhSq9CeEqUaAdN6ANoCEdAlVxndweeWnV9lChoBkdAYoJSwW3z+WgHTegDaAhHQJVd6YtxuKp1fZQoaAZHQGck4oiLVFxoB03oA2gIR0CVX4qAz544dX2UKGgGR0BiZINy5qdpaAdN6ANoCEdAlWEV2zOX3XV9lChoBkdAZnk+mFaje2gHTegDaAhHQJVhdpudf9h1fZQoaAZHQGBwHKW9lEtoB03oA2gIR0CVYvZLqUu+dX2UKGgGR0BnJeipNsWPaAdN6ANoCEdAlWNlC9h7V3V9lChoBkdAMu0tZmqYJGgHS+5oCEdAlWrrrC3w1HV9lChoBkdAYq1ycTakAWgHTegDaAhHQJVzJd7fHgh1fZQoaAZHQHERpiRW915oB02SAmgIR0CVdC9XLeQ/dX2UKGgGR0BnsKZ8a4tpaAdN6ANoCEdAlXsFZs9B8nV9lChoBkdAZi3iPyTY/WgHTegDaAhHQJV79LRKHwh1fZQoaAZHQGAt2iL2pQ1oB03oA2gIR0CVfBHe7+UAdX2UKGgGR0Bmc/WhAWzoaAdN6ANoCEdAlZDKAe7tiXV9lChoBkdAZSLQv6CUYGgHTegDaAhHQJWUnR9gF5h1fZQoaAZHQGZFK6e5Fw1oB03oA2gIR0CVlwzoEB8ydX2UKGgGR0BlNEv24/eMaAdN6ANoCEdAlZx0RradtnV9lChoBkdAaJeAS39aU2gHTegDaAhHQJWngUCaJAN1fZQoaAZHQGOXLpiZv1loB03oA2gIR0CVqX5XU6PsdX2UKGgGR0Bf7z2Jzkp7aAdN6ANoCEdAla12plz2e3V9lChoBkdAZY8PsAvL5mgHTegDaAhHQJWt94D9wWF1fZQoaAZHQGUGV81Gb1BoB03oA2gIR0CVr+uy/sVtdX2UKGgGR0Bm6q4hEBsAaAdN6ANoCEdAlbCE5+6RQ3V9lChoBkdAY3cZ0CA+ZGgHTegDaAhHQJW8WiJwbVB1fZQoaAZHQGaHANgBtDVoB03oA2gIR0CVxWLncL0BdX2UKGgGR0BhFuAbyYoiaAdN6ANoCEdAlcafv4M4LnV9lChoBkdAZ4IYJmdy1mgHTegDaAhHQJXOwGhVU+91fZQoaAZHQF+oxk/bCaZoB03oA2gIR0CVz+GViWmhdX2UKGgGR0BmaTLjghr4aAdN6ANoCEdAldACgGr0a3V9lChoBkdAZUU+V1Oj7GgHTegDaAhHQJXQfwz+FUR1fZQoaAZHQFvhJMQEpy9oB03oA2gIR0CV5xbd8Aq/dX2UKGgGR0BgtH9YOlO5aAdN6ANoCEdAleqqvmoze3V9lChoBkdAYatTisGPgmgHTegDaAhHQJXxHofSx7l1fZQoaAZHQGActcv/R3NoB03oA2gIR0CV+/AbQ1JldX2UKGgGR0BkzdC5VfeDaAdN6ANoCEdAlf3F1B+nZXV9lChoBkdAXWYJ9iMHbGgHTegDaAhHQJYBztkWhyt1fZQoaAZHQGMnkCFK02NoB03oA2gIR0CWAkmlqJuVdX2UKGgGR0Bi4axNZeRgaAdN6ANoCEdAlgQIplSS/3V9lChoBkdAYryw3YL9dmgHTegDaAhHQJYEhq1w5vN1fZQoaAZHQFrq69TP0I1oB03oA2gIR0CWDGzTnaFmdX2UKGgGR0Bj4MzVMEidaAdN6ANoCEdAlhSe/xlQM3V9lChoBkdAZek8U21lXmgHTegDaAhHQJYVrww0wal1fZQoaAZHQGNycS5AhStoB03oA2gIR0CWHxTR6WxAdX2UKGgGR0Bl290FKTStaAdN6ANoCEdAliByUTtb93V9lChoBkdAY6Kfg75mAmgHTegDaAhHQJYgnKZDzAh1fZQoaAZHQGG/CONo8IRoB03oA2gIR0CWIUJb+tKadX2UKGgGR0BneC5CngpCaAdN6ANoCEdAljc/16E8JXV9lChoBkdAY11n/1g6VGgHTegDaAhHQJY52GcnVoZ1fZQoaAZHQGXxkfcN6PdoB03oA2gIR0CWP0Yao/A1dX2UKGgGR0BiiLuv2Xb/aAdN6ANoCEdAlkrI7zTWoXV9lChoBkdAZBo01IiC8WgHTegDaAhHQJZNeRSxZ+x1fZQoaAZHQGT3eFtbcGloB03oA2gIR0CWUyPmPo3adX2UKGgGR0Bk0pIe5nUUaAdN6ANoCEdAllPfqkdmx3V9lChoBkdAYurwjt5UtWgHTegDaAhHQJZWi76Hj6x1fZQoaAZHQGGppk5IYm9oB03oA2gIR0CWVzc1O0swdX2UKGgGR0BhtQ/HHWBjaAdN6ANoCEdAlmD1OXVslHV9lChoBkdAZlYur6tT1mgHTegDaAhHQJZqjXYlIEt1fZQoaAZHQF+qV+7UXpJoB03oA2gIR0CWa8M1CPZJdX2UKGgGR0Bg/JY3eenRaAdN6ANoCEdAlnNaQq7ROXV9lChoBkdAZVB3NcGC7WgHTegDaAhHQJZ0XYwqRU51fZQoaAZHQGMW6IN3GGVoB03oA2gIR0CWdIAIIF/ydX2UKGgGR0Bf5UBfa6BiaAdN6ANoCEdAlnT4pUgjhXV9lChoBkdAYk7XU6PsA2gHTegDaAhHQJaNelGgBcR1fZQoaAZHQGXJSwW3z+ZoB03oA2gIR0CWkBuIyj59dX2UKGgGR0Bc701AJLM+aAdN6ANoCEdAlpXsZxaPjnV9lChoBkdAZWtgb6xgRmgHTegDaAhHQJahsm4RVZN1fZQoaAZHQGNGHDBMzuZoB03oA2gIR0CWo7KJEYwZdX2UKGgGR0Bo+7Q/oq0/aAdN6ANoCEdAlqe95hScb3V9lChoBkdAZ6MKm8/Uv2gHTegDaAhHQJaoSSowVTJ1fZQoaAZHQGd2EOAiFCdoB03oA2gIR0CWqkgrH2h7dX2UKGgGR0Bl/DHQyAQQaAdN6ANoCEdAlqrkSmIj4nV9lChoBkdAYH31bJOnEWgHTegDaAhHQJa1oBtDUmV1fZQoaAZHQGLDlPBSDRNoB03oA2gIR0CWwKUtqYZ3dX2UKGgGR0Bl/Sfg75mAaAdN6ANoCEdAlsHJNGmUGHV9lChoBkdAY9SDVYp2EGgHTegDaAhHQJbJLlvIfbN1fZQoaAZHQGQi0bT+ee5oB03oA2gIR0CWyizbeuV5dX2UKGgGR0BmfQr1/Ue/aAdN6ANoCEdAlspLv9cbBHV9lChoBkdAWx+wW3z+WGgHTegDaAhHQJbKvh/Aj6h1fZQoaAZHQGAa6lLvkR1oB03oA2gIR0CWzr3Gn4widWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efeda93a242972b2558c1f0afe12e97cf364c057614ed1e0bcc28178e1b9af99
|
3 |
+
size 148020
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7bea5f21e440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bea5f21e4d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bea5f21e560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bea5f21e5f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7bea5f21e680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7bea5f21e710>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7bea5f21e7a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bea5f21e830>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7bea5f21e8c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bea5f21e950>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bea5f21e9e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7bea5f21ea70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7bea01ef23c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1733500264165153461,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbmZjwUWK+67soZu85p/TZk/Pa47ShgtgAAgD8AAIA/pl3pPdRclD+zMAI/b1vovhHVYjz62/c9AAAAAAAAAAA91a0+yfyIP6NSa72NfF++pGEBPsjM570AAAAAAAAAAPP1kD1cB1C67WTOOvwjtzVHCwM75mbzuQAAgD8AAIA/ih+gPrTFSj9Hvcm9c2RxvlwZtz3ScvO8AAAAAAAAAABm/4w9nXA6P/B9bL0+P3m+28VTPMNtar0AAAAAAAAAAI2hIz6hooi8tmzZufc07jcKhPG9W54TOQAAgD8AAIA/mv0NPVxLWrpK3d+57SXBtGIoY7kmogM5AACAPwAAgD/zYIY9oXagPdNWhb073nK+9k7+vHkWAD0AAAAAAAAAAGYf07xI57S6HtNkunIt5LUO1Zc35r2COQAAgD8AAIA/s5cXPVybQLquzs26WtlqtsTX2DpSDO45AACAPwAAgD8aZSE9FEyLunK98ru+kUo4rysCOiIkczcAAIA/AACAPxovVr2onWA/0boUPV+ig77QGXe8YU6vvQAAAAAAAAAAcx3BPeEagrrthTu5VV4otIezLruY4Vo4AACAPwAAgD8AxKa8VeM8PoV+ajz2j0m+RCLbvCJ+r7wAAAAAAAAAAGY8hzxch066UT+yOdQ7Xbae5/G6fSlatQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF2tOf/WDpWMAWyUTegDjAF0lEdAlPIU0rK/23V9lChoBkdAZR2l54W1t2gHTegDaAhHQJT2JjG1hLJ1fZQoaAZHQGK8khq0tyxoB03oA2gIR0CU/a0bLlmwdX2UKGgGR0A+vzzVc2R8aAdNDAFoCEdAlP7SGN70F3V9lChoBkdAZEVzSThYNmgHTegDaAhHQJUK3efqX4V1fZQoaAZHQGBO3zMA3kxoB03oA2gIR0CVDM9nK4hEdX2UKGgGR0Bjfqtq59VnaAdN6ANoCEdAlQ7joMa0hXV9lChoBkdAYXOkcjqv/2gHTegDaAhHQJUQ545cTrV1fZQoaAZHQGTL/3nIQvpoB03oA2gIR0CVEWgX/HYIdX2UKGgGR0Blm3WrfcesaAdN6ANoCEdAlRNOm78Nx3V9lChoBkdAZI5QJokAxWgHTegDaAhHQJUT6iJwbVB1fZQoaAZHQGIOLGza9K5oB03oA2gIR0CVGoCK77KrdX2UKGgGR0Bhagw0waisaAdN6ANoCEdAlSjhRQ79ynV9lChoBkdAYcmmReTmn2gHTegDaAhHQJVDOdJ8OTd1fZQoaAZHQGF2FwkxASpoB03oA2gIR0CVRDUS7GvPdX2UKGgGR0BjNPmq5sj3aAdN6ANoCEdAlURSeumrKnV9lChoBkdAZIKuvECNj2gHTegDaAhHQJVEwC6pYLd1fZQoaAZHQGe3/4IrvstoB03oA2gIR0CVSHyCnP3SdX2UKGgGR0ByWtv/BFd+aAdN5AFoCEdAlUuwV0tAcHV9lChoBkdAY2IV0tAcDWgHTegDaAhHQJVRMX2ugYh1fZQoaAZHQGeeAu7HyVhoB03oA2gIR0CVUnhegL7XdX2UKGgGR0BhSq9CeEqUaAdN6ANoCEdAlVxndweeWnV9lChoBkdAYoJSwW3z+WgHTegDaAhHQJVd6YtxuKp1fZQoaAZHQGck4oiLVFxoB03oA2gIR0CVX4qAz544dX2UKGgGR0BiZINy5qdpaAdN6ANoCEdAlWEV2zOX3XV9lChoBkdAZnk+mFaje2gHTegDaAhHQJVhdpudf9h1fZQoaAZHQGBwHKW9lEtoB03oA2gIR0CVYvZLqUu+dX2UKGgGR0BnJeipNsWPaAdN6ANoCEdAlWNlC9h7V3V9lChoBkdAMu0tZmqYJGgHS+5oCEdAlWrrrC3w1HV9lChoBkdAYq1ycTakAWgHTegDaAhHQJVzJd7fHgh1fZQoaAZHQHERpiRW915oB02SAmgIR0CVdC9XLeQ/dX2UKGgGR0BnsKZ8a4tpaAdN6ANoCEdAlXsFZs9B8nV9lChoBkdAZi3iPyTY/WgHTegDaAhHQJV79LRKHwh1fZQoaAZHQGAt2iL2pQ1oB03oA2gIR0CVfBHe7+UAdX2UKGgGR0Bmc/WhAWzoaAdN6ANoCEdAlZDKAe7tiXV9lChoBkdAZSLQv6CUYGgHTegDaAhHQJWUnR9gF5h1fZQoaAZHQGZFK6e5Fw1oB03oA2gIR0CVlwzoEB8ydX2UKGgGR0BlNEv24/eMaAdN6ANoCEdAlZx0RradtnV9lChoBkdAaJeAS39aU2gHTegDaAhHQJWngUCaJAN1fZQoaAZHQGOXLpiZv1loB03oA2gIR0CVqX5XU6PsdX2UKGgGR0Bf7z2Jzkp7aAdN6ANoCEdAla12plz2e3V9lChoBkdAZY8PsAvL5mgHTegDaAhHQJWt94D9wWF1fZQoaAZHQGUGV81Gb1BoB03oA2gIR0CVr+uy/sVtdX2UKGgGR0Bm6q4hEBsAaAdN6ANoCEdAlbCE5+6RQ3V9lChoBkdAY3cZ0CA+ZGgHTegDaAhHQJW8WiJwbVB1fZQoaAZHQGaHANgBtDVoB03oA2gIR0CVxWLncL0BdX2UKGgGR0BhFuAbyYoiaAdN6ANoCEdAlcafv4M4LnV9lChoBkdAZ4IYJmdy1mgHTegDaAhHQJXOwGhVU+91fZQoaAZHQF+oxk/bCaZoB03oA2gIR0CVz+GViWmhdX2UKGgGR0BmaTLjghr4aAdN6ANoCEdAldACgGr0a3V9lChoBkdAZUU+V1Oj7GgHTegDaAhHQJXQfwz+FUR1fZQoaAZHQFvhJMQEpy9oB03oA2gIR0CV5xbd8Aq/dX2UKGgGR0BgtH9YOlO5aAdN6ANoCEdAleqqvmoze3V9lChoBkdAYatTisGPgmgHTegDaAhHQJXxHofSx7l1fZQoaAZHQGActcv/R3NoB03oA2gIR0CV+/AbQ1JldX2UKGgGR0BkzdC5VfeDaAdN6ANoCEdAlf3F1B+nZXV9lChoBkdAXWYJ9iMHbGgHTegDaAhHQJYBztkWhyt1fZQoaAZHQGMnkCFK02NoB03oA2gIR0CWAkmlqJuVdX2UKGgGR0Bi4axNZeRgaAdN6ANoCEdAlgQIplSS/3V9lChoBkdAYryw3YL9dmgHTegDaAhHQJYEhq1w5vN1fZQoaAZHQFrq69TP0I1oB03oA2gIR0CWDGzTnaFmdX2UKGgGR0Bj4MzVMEidaAdN6ANoCEdAlhSe/xlQM3V9lChoBkdAZek8U21lXmgHTegDaAhHQJYVrww0wal1fZQoaAZHQGNycS5AhStoB03oA2gIR0CWHxTR6WxAdX2UKGgGR0Bl290FKTStaAdN6ANoCEdAliByUTtb93V9lChoBkdAY6Kfg75mAmgHTegDaAhHQJYgnKZDzAh1fZQoaAZHQGG/CONo8IRoB03oA2gIR0CWIUJb+tKadX2UKGgGR0BneC5CngpCaAdN6ANoCEdAljc/16E8JXV9lChoBkdAY11n/1g6VGgHTegDaAhHQJY52GcnVoZ1fZQoaAZHQGXxkfcN6PdoB03oA2gIR0CWP0Yao/A1dX2UKGgGR0BiiLuv2Xb/aAdN6ANoCEdAlkrI7zTWoXV9lChoBkdAZBo01IiC8WgHTegDaAhHQJZNeRSxZ+x1fZQoaAZHQGT3eFtbcGloB03oA2gIR0CWUyPmPo3adX2UKGgGR0Bk0pIe5nUUaAdN6ANoCEdAllPfqkdmx3V9lChoBkdAYurwjt5UtWgHTegDaAhHQJZWi76Hj6x1fZQoaAZHQGGppk5IYm9oB03oA2gIR0CWVzc1O0swdX2UKGgGR0BhtQ/HHWBjaAdN6ANoCEdAlmD1OXVslHV9lChoBkdAZlYur6tT1mgHTegDaAhHQJZqjXYlIEt1fZQoaAZHQF+qV+7UXpJoB03oA2gIR0CWa8M1CPZJdX2UKGgGR0Bg/JY3eenRaAdN6ANoCEdAlnNaQq7ROXV9lChoBkdAZVB3NcGC7WgHTegDaAhHQJZ0XYwqRU51fZQoaAZHQGMW6IN3GGVoB03oA2gIR0CWdIAIIF/ydX2UKGgGR0Bf5UBfa6BiaAdN6ANoCEdAlnT4pUgjhXV9lChoBkdAYk7XU6PsA2gHTegDaAhHQJaNelGgBcR1fZQoaAZHQGXJSwW3z+ZoB03oA2gIR0CWkBuIyj59dX2UKGgGR0Bc701AJLM+aAdN6ANoCEdAlpXsZxaPjnV9lChoBkdAZWtgb6xgRmgHTegDaAhHQJahsm4RVZN1fZQoaAZHQGNGHDBMzuZoB03oA2gIR0CWo7KJEYwZdX2UKGgGR0Bo+7Q/oq0/aAdN6ANoCEdAlqe95hScb3V9lChoBkdAZ6MKm8/Uv2gHTegDaAhHQJaoSSowVTJ1fZQoaAZHQGd2EOAiFCdoB03oA2gIR0CWqkgrH2h7dX2UKGgGR0Bl/DHQyAQQaAdN6ANoCEdAlqrkSmIj4nV9lChoBkdAYH31bJOnEWgHTegDaAhHQJa1oBtDUmV1fZQoaAZHQGLDlPBSDRNoB03oA2gIR0CWwKUtqYZ3dX2UKGgGR0Bl/Sfg75mAaAdN6ANoCEdAlsHJNGmUGHV9lChoBkdAY9SDVYp2EGgHTegDaAhHQJbJLlvIfbN1fZQoaAZHQGQi0bT+ee5oB03oA2gIR0CWyizbeuV5dX2UKGgGR0BmfQr1/Ue/aAdN6ANoCEdAlspLv9cbBHV9lChoBkdAWx+wW3z+WGgHTegDaAhHQJbKvh/Aj6h1fZQoaAZHQGAa6lLvkR1oB03oA2gIR0CWzr3Gn4widWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:096842a3f1db0b1d07971e778705fd870b5f51efb6d68edc8bb767af136f2c2b
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab802d64101174b6157fe65e10a0657408ce8323aafaf9ef13b0ec6c9d502f33
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 239.8427486, "std_reward": 22.20258849176976, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-06T16:27:09.980932"}
|