cs608 commited on
Commit
1d91451
1 Parent(s): 2583e70

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ datasets:
7
+ - billsum
8
+ metrics:
9
+ - rouge
10
+ model-index:
11
+ - name: CS685-text-summarizer-2
12
+ results:
13
+ - task:
14
+ name: Sequence-to-sequence Language Modeling
15
+ type: text2text-generation
16
+ dataset:
17
+ name: billsum
18
+ type: billsum
19
+ config: default
20
+ split: train[:20%]
21
+ args: default
22
+ metrics:
23
+ - name: Rouge1
24
+ type: rouge
25
+ value: 17.1607
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # CS685-text-summarizer-2
32
+
33
+ This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the billsum dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.7651
36
+ - Rouge1: 17.1607
37
+ - Rouge2: 13.943
38
+ - Rougel: 16.6793
39
+ - Rougelsum: 16.8422
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 5.6e-05
59
+ - train_batch_size: 6
60
+ - eval_batch_size: 6
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 5
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
69
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
70
+ | 2.4547 | 1.0 | 569 | 1.9895 | 16.6343 | 13.0432 | 16.1262 | 16.2449 |
71
+ | 2.0246 | 2.0 | 1138 | 1.8688 | 16.939 | 13.4711 | 16.4359 | 16.5797 |
72
+ | 1.818 | 3.0 | 1707 | 1.8075 | 17.1388 | 13.827 | 16.6136 | 16.7574 |
73
+ | 1.6831 | 4.0 | 2276 | 1.7744 | 17.2292 | 13.9353 | 16.6961 | 16.8786 |
74
+ | 1.5956 | 5.0 | 2845 | 1.7651 | 17.1607 | 13.943 | 16.6793 | 16.8422 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.28.0
80
+ - Pytorch 2.0.0+cu118
81
+ - Datasets 2.12.0
82
+ - Tokenizers 0.13.3