update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- billsum
|
8 |
+
metrics:
|
9 |
+
- rouge
|
10 |
+
model-index:
|
11 |
+
- name: CS685-text-summarizer-2
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Sequence-to-sequence Language Modeling
|
15 |
+
type: text2text-generation
|
16 |
+
dataset:
|
17 |
+
name: billsum
|
18 |
+
type: billsum
|
19 |
+
config: default
|
20 |
+
split: train[:20%]
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Rouge1
|
24 |
+
type: rouge
|
25 |
+
value: 17.1607
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# CS685-text-summarizer-2
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the billsum dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.7651
|
36 |
+
- Rouge1: 17.1607
|
37 |
+
- Rouge2: 13.943
|
38 |
+
- Rougel: 16.6793
|
39 |
+
- Rougelsum: 16.8422
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 5.6e-05
|
59 |
+
- train_batch_size: 6
|
60 |
+
- eval_batch_size: 6
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 5
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
70 |
+
| 2.4547 | 1.0 | 569 | 1.9895 | 16.6343 | 13.0432 | 16.1262 | 16.2449 |
|
71 |
+
| 2.0246 | 2.0 | 1138 | 1.8688 | 16.939 | 13.4711 | 16.4359 | 16.5797 |
|
72 |
+
| 1.818 | 3.0 | 1707 | 1.8075 | 17.1388 | 13.827 | 16.6136 | 16.7574 |
|
73 |
+
| 1.6831 | 4.0 | 2276 | 1.7744 | 17.2292 | 13.9353 | 16.6961 | 16.8786 |
|
74 |
+
| 1.5956 | 5.0 | 2845 | 1.7651 | 17.1607 | 13.943 | 16.6793 | 16.8422 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.28.0
|
80 |
+
- Pytorch 2.0.0+cu118
|
81 |
+
- Datasets 2.12.0
|
82 |
+
- Tokenizers 0.13.3
|