|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import json |
|
import logging |
|
import os |
|
|
|
import tokenizers |
|
|
|
from nemo.collections.common.tokenizers.sentencepiece_tokenizer import create_spt_model |
|
from nemo.utils.data_utils import DataStoreObject |
|
|
|
parser = argparse.ArgumentParser(description='Create tokenizer') |
|
group = parser.add_mutually_exclusive_group(required=True) |
|
group.add_argument("--manifest", default=None, type=str, help='Comma separated list of manifest files') |
|
group.add_argument("--data_file", default=None, help='data file from which to create tokenizer model') |
|
parser.add_argument("--data_root", required=True, default=None, type=str, help='Output directory') |
|
parser.add_argument("--vocab_size", default=1024, type=int, help='Vocabulary size') |
|
parser.add_argument("--tokenizer", default="wpe", choices=["spe", "wpe"], help='Type of tokenization to perform') |
|
parser.add_argument( |
|
"--spe_type", |
|
default="bpe", |
|
choices=['bpe', 'unigram', 'char', 'word'], |
|
help='Type of the SentencePiece model. Can be `bpe`, `unigram`, `char` or `word`.' |
|
'Used only if --tokenizer == `spe`', |
|
) |
|
parser.add_argument( |
|
'--spe_character_coverage', |
|
type=float, |
|
default=1.0, |
|
help="Character coverage percentage for SentencePiece tokenization. For languages " |
|
"with large vocabulary, should be close to 0.9995, otherwise kept as 1.0", |
|
) |
|
parser.add_argument('--spe_bos', action='store_true', help='Add <s> token to SentencePiece Tokenizer.') |
|
parser.add_argument('--spe_eos', action='store_true', help='Add </s> token to SentencePiece Tokenizer.') |
|
parser.add_argument('--spe_pad', action='store_true', help='Add <pad> token to SentencePiece Tokenizer.') |
|
parser.add_argument( |
|
'--spe_sample_size', |
|
type=int, |
|
default=-1, |
|
help="Samples the dataset by `sample_size` if positive integer, otherwise uses whole dataset", |
|
) |
|
parser.add_argument('--spe_train_extremely_large_corpus', action='store_true', help='') |
|
parser.add_argument( |
|
'--spe_max_sentencepiece_length', |
|
type=int, |
|
default=-1, |
|
help='Limit the maximum number of tokens in each SentencePiece subword. ' |
|
'Must be a positive integer > 0. By default places no limit on subword length.', |
|
) |
|
parser.add_argument( |
|
'--spe_no_split_by_unicode_script', |
|
dest='spe_split_by_unicode_script', |
|
action='store_false', |
|
help="Don't use Unicode script to split sentence pieces.", |
|
) |
|
parser.add_argument('--no_lower_case', dest='lower_case', action='store_false') |
|
parser.add_argument("--log", action='store_true') |
|
parser.set_defaults(log=False, lower_case=True, spe_train_extremely_large_corpus=False) |
|
args = parser.parse_args() |
|
|
|
|
|
def __build_document_from_manifests( |
|
data_root: str, manifests: str, |
|
): |
|
if ',' in manifests: |
|
manifests = manifests.split(',') |
|
else: |
|
manifests = [manifests] |
|
|
|
document_dir = os.path.join(data_root, 'text_corpus') |
|
if not os.path.exists(document_dir): |
|
os.makedirs(document_dir) |
|
|
|
document_path = os.path.join(document_dir, 'document.txt') |
|
|
|
if os.path.exists(document_path): |
|
logging.info('Corpus already exists at path : %s', document_path) |
|
return document_path |
|
|
|
num_lines = 0 |
|
with open(document_path, 'w') as out_writer: |
|
for manifest in manifests: |
|
with open(DataStoreObject(manifest).get(), 'r') as in_reader: |
|
for line in in_reader: |
|
item = json.loads(line) |
|
text = item['text'] |
|
|
|
out_writer.write(text + '\n') |
|
out_writer.flush() |
|
|
|
num_lines += 1 |
|
|
|
logging.info(f"Finished extracting manifest : {manifest}") |
|
|
|
logging.info("Finished extracting all manifests ! Number of sentences : {}".format(num_lines)) |
|
return document_path |
|
|
|
|
|
def __process_data( |
|
text_path: str, |
|
dst_folder: str, |
|
vocab_size: int, |
|
tokenizer_type: str, |
|
spe_type: str, |
|
spe_character_coverage: float, |
|
spe_train_extremely_large_corpus: bool, |
|
spe_sample_size: int, |
|
spe_max_sentencepiece_length: int, |
|
spe_split_by_unicode_script: bool, |
|
spe_bos: bool, |
|
spe_eos: bool, |
|
spe_pad: bool, |
|
lower_case: bool, |
|
): |
|
""" |
|
Converts flac to wav and build manifests's json |
|
Args: |
|
text_path: source with text lines |
|
dst_folder: where wav files will be stored |
|
vocab_size: vocabular size used in encoding the text |
|
tokenizer_type: type of tokenization to perform - wpe or spe |
|
spe_type: type of tokenization model used for spe. |
|
spe_character_coverage: float value between 0 and 1 (as a percentage). For languages with a vast charset, |
|
can be < 1.0, but for all other languages, it should be set as 1.0 |
|
spe_sample_size: int, default of -1. If positive integer is used, samples the dataset |
|
by given sample size. |
|
spe_train_extremely_large_corpus: bool. If dataset is too large, and user has sufficient RAM, |
|
this flag can be set to try to trained the tokenizer. Will silently fail if it runs out of RAM. |
|
spe_max_sentencepiece_length: Limits the maximum length of the SentencePiece subword that can be constructed. |
|
By default, no limit is placed. |
|
spe_bos: Bool flag, whether to add <s> to SentencePiece tokenizer vocabulary. |
|
spe_eos: Bool flag, whether to add </s> to SentencePiece tokenizer vocabulary. |
|
spe_pad: Bool flag, whether to add <pad> to SentencePiece tokenizer vocabulary. |
|
lower_case: whether to tokenize with lower case character set only (for english) |
|
|
|
Returns: |
|
""" |
|
if tokenizer_type == 'spe': |
|
|
|
|
|
if spe_max_sentencepiece_length > 0: |
|
tokenizer_dir = os.path.join(dst_folder, 'tokenizer_{}_{}_v{}_max_{}').format( |
|
tokenizer_type, spe_type, vocab_size, spe_max_sentencepiece_length |
|
) |
|
else: |
|
tokenizer_dir = os.path.join(dst_folder, 'tokenizer_{}_{}_v{}').format( |
|
tokenizer_type, spe_type, vocab_size |
|
) |
|
|
|
if spe_pad: |
|
tokenizer_dir = f'{tokenizer_dir}_pad' |
|
if spe_bos: |
|
tokenizer_dir = f'{tokenizer_dir}_bos' |
|
if spe_eos: |
|
tokenizer_dir = f'{tokenizer_dir}_eos' |
|
|
|
if not os.path.exists(tokenizer_dir): |
|
os.makedirs(tokenizer_dir) |
|
|
|
if os.path.exists(os.path.join(tokenizer_dir, 'tokenizer.model')): |
|
logging.warning("Model file already exists, overriding old model file !") |
|
os.remove(os.path.join(tokenizer_dir, 'tokenizer.model')) |
|
|
|
|
|
tokenizer_path, vocab_path = create_spt_model( |
|
data_file=text_path, |
|
vocab_size=vocab_size, |
|
sample_size=spe_sample_size, |
|
do_lower_case=lower_case, |
|
output_dir=tokenizer_dir, |
|
tokenizer_type=spe_type, |
|
character_coverage=spe_character_coverage, |
|
train_extremely_large_corpus=spe_train_extremely_large_corpus, |
|
max_sentencepiece_length=spe_max_sentencepiece_length, |
|
split_by_unicode_script=spe_split_by_unicode_script, |
|
bos=spe_bos, |
|
eos=spe_eos, |
|
pad=spe_pad, |
|
) |
|
|
|
else: |
|
tokenizer_dir = os.path.join(dst_folder, 'tokenizer_{}_v{}').format(tokenizer_type, vocab_size) |
|
|
|
if not os.path.exists(tokenizer_dir): |
|
os.makedirs(tokenizer_dir) |
|
|
|
tokenizer = tokenizers.BertWordPieceTokenizer(lowercase=lower_case) |
|
|
|
tokenizer.train(text_path, vocab_size=vocab_size) |
|
tokenizer.save_model(tokenizer_dir) |
|
|
|
return tokenizer_dir |
|
|
|
|
|
def main(): |
|
data_root = args.data_root |
|
manifests = args.manifest |
|
data_file = args.data_file |
|
vocab_size = args.vocab_size |
|
tokenizer = args.tokenizer |
|
spe_type = args.spe_type |
|
spe_character_coverage = args.spe_character_coverage |
|
spe_sample_size = args.spe_sample_size |
|
spe_train_extremely_large_corpus = args.spe_train_extremely_large_corpus |
|
spe_max_sentencepiece_length = args.spe_max_sentencepiece_length |
|
spe_split_by_unicode_script = args.spe_split_by_unicode_script |
|
spe_bos, spe_eos, spe_pad = args.spe_bos, args.spe_eos, args.spe_pad |
|
lower_case = args.lower_case |
|
|
|
if not os.path.exists(data_root): |
|
os.makedirs(data_root) |
|
|
|
if args.log: |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
if manifests: |
|
text_corpus_path = __build_document_from_manifests(data_root, manifests) |
|
else: |
|
text_corpus_path = data_file |
|
tokenizer_path = __process_data( |
|
text_corpus_path, |
|
data_root, |
|
vocab_size, |
|
tokenizer, |
|
spe_type, |
|
lower_case=lower_case, |
|
spe_character_coverage=spe_character_coverage, |
|
spe_sample_size=spe_sample_size, |
|
spe_train_extremely_large_corpus=spe_train_extremely_large_corpus, |
|
spe_max_sentencepiece_length=spe_max_sentencepiece_length, |
|
spe_split_by_unicode_script=spe_split_by_unicode_script, |
|
spe_bos=spe_bos, |
|
spe_eos=spe_eos, |
|
spe_pad=spe_pad, |
|
) |
|
|
|
print("Serialized tokenizer at location :", tokenizer_path) |
|
logging.info('Done!') |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|