crystal-technologies's picture
Upload 1287 files
2d8da09
raw
history blame
4.45 kB
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import re
import string
from collections import Counter
from rouge_score import rouge_scorer
"""
This script can be used to calcualte exact match and F1 scores for many different tasks.
The file "squad_test_predictions.jsonl" is assumed to be generated by the
`examples/nlp/language_modeling/tuning/megatron_gpt_peft_eval.py` script
Example command for GPT Preds
```
python peft_metric_calc.py \
--pred_file squad_test_predictions.jsonl \
--label_field "original_answers" \
```
"""
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return normalize_answer(prediction) == normalize_answer(ground_truth)
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def main():
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument(
'--pred_file',
type=str,
help="Text file with test set prompts + model predictions. Prediction file can be made by running NeMo/examples/nlp/language_modeling/megatron_gpt_prompt_learning_eval.py",
)
parser.add_argument(
'--pred_field',
type=str,
help="The field in the json file that contains the prediction tokens",
default="pred",
)
parser.add_argument(
'--label_field',
type=str,
help="The field in the json file that contains the ground truth tokens",
default="label",
)
args = parser.parse_args()
pred_file = args.pred_file
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
preds = open(pred_file, encoding="utf-8").readlines()
f1 = exact_match = total = r_score = 0
for i in range(len(preds)):
pred_line = json.loads(preds[i])
pred_answer = pred_line[args.pred_field]
true_answers = pred_line[args.label_field]
if not isinstance(true_answers, list):
true_answers = [true_answers]
r_scores = []
for ta in true_answers:
r_scores.append(scorer.score(ta, pred_answer)['rougeL'].fmeasure)
r_score += max(r_scores)
exact_match += metric_max_over_ground_truths(exact_match_score, pred_answer, true_answers)
f1 += metric_max_over_ground_truths(f1_score, pred_answer, true_answers)
total += 1
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
r_score = 100 * (r_score / total)
res = {'exact_match': exact_match, 'f1': f1, "rougeL": r_score, 'total': total}
print('\t'.join([f"{k} {v:.3f}" for k, v in res.items()]))
if __name__ == "__main__":
main()