|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import json |
|
import re |
|
import string |
|
from collections import Counter |
|
from rouge_score import rouge_scorer |
|
|
|
|
|
""" |
|
This script can be used to calcualte exact match and F1 scores for many different tasks. |
|
The file "squad_test_predictions.jsonl" is assumed to be generated by the |
|
`examples/nlp/language_modeling/tuning/megatron_gpt_peft_eval.py` script |
|
|
|
Example command for GPT Preds |
|
|
|
``` |
|
python peft_metric_calc.py \ |
|
--pred_file squad_test_predictions.jsonl \ |
|
--label_field "original_answers" \ |
|
``` |
|
|
|
|
|
""" |
|
|
|
|
|
def normalize_answer(s): |
|
"""Lower text and remove punctuation, articles and extra whitespace.""" |
|
|
|
def remove_articles(text): |
|
return re.sub(r'\b(a|an|the)\b', ' ', text) |
|
|
|
def white_space_fix(text): |
|
return ' '.join(text.split()) |
|
|
|
def remove_punc(text): |
|
exclude = set(string.punctuation) |
|
return ''.join(ch for ch in text if ch not in exclude) |
|
|
|
def lower(text): |
|
return text.lower() |
|
|
|
return white_space_fix(remove_articles(remove_punc(lower(s)))) |
|
|
|
|
|
def f1_score(prediction, ground_truth): |
|
prediction_tokens = normalize_answer(prediction).split() |
|
ground_truth_tokens = normalize_answer(ground_truth).split() |
|
common = Counter(prediction_tokens) & Counter(ground_truth_tokens) |
|
num_same = sum(common.values()) |
|
if num_same == 0: |
|
return 0 |
|
precision = 1.0 * num_same / len(prediction_tokens) |
|
recall = 1.0 * num_same / len(ground_truth_tokens) |
|
f1 = (2 * precision * recall) / (precision + recall) |
|
return f1 |
|
|
|
|
|
def exact_match_score(prediction, ground_truth): |
|
return normalize_answer(prediction) == normalize_answer(ground_truth) |
|
|
|
|
|
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): |
|
scores_for_ground_truths = [] |
|
for ground_truth in ground_truths: |
|
score = metric_fn(prediction, ground_truth) |
|
scores_for_ground_truths.append(score) |
|
return max(scores_for_ground_truths) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Process some integers.') |
|
parser.add_argument( |
|
'--pred_file', |
|
type=str, |
|
help="Text file with test set prompts + model predictions. Prediction file can be made by running NeMo/examples/nlp/language_modeling/megatron_gpt_prompt_learning_eval.py", |
|
) |
|
parser.add_argument( |
|
'--pred_field', |
|
type=str, |
|
help="The field in the json file that contains the prediction tokens", |
|
default="pred", |
|
) |
|
parser.add_argument( |
|
'--label_field', |
|
type=str, |
|
help="The field in the json file that contains the ground truth tokens", |
|
default="label", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
pred_file = args.pred_file |
|
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True) |
|
preds = open(pred_file, encoding="utf-8").readlines() |
|
f1 = exact_match = total = r_score = 0 |
|
|
|
for i in range(len(preds)): |
|
pred_line = json.loads(preds[i]) |
|
|
|
pred_answer = pred_line[args.pred_field] |
|
true_answers = pred_line[args.label_field] |
|
if not isinstance(true_answers, list): |
|
true_answers = [true_answers] |
|
|
|
r_scores = [] |
|
for ta in true_answers: |
|
r_scores.append(scorer.score(ta, pred_answer)['rougeL'].fmeasure) |
|
r_score += max(r_scores) |
|
exact_match += metric_max_over_ground_truths(exact_match_score, pred_answer, true_answers) |
|
f1 += metric_max_over_ground_truths(f1_score, pred_answer, true_answers) |
|
total += 1 |
|
|
|
exact_match = 100.0 * exact_match / total |
|
f1 = 100.0 * f1 / total |
|
r_score = 100 * (r_score / total) |
|
res = {'exact_match': exact_match, 'f1': f1, "rougeL": r_score, 'total': total} |
|
print('\t'.join([f"{k} {v:.3f}" for k, v in res.items()])) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|