crystal-technologies's picture
Upload 1287 files
2d8da09
raw
history blame
6.01 kB
#!/usr/bin/env python3
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Builds a .nemo file with average weights over multiple .ckpt files (assumes .ckpt files in same folder as .nemo file).
Usage example for building *-averaged.nemo for a given .nemo file:
NeMo/scripts/checkpoint_averaging/checkpoint_averaging.py my_model.nemo
Usage example for building *-averaged.nemo files for all results in sub-directories under current path:
find . -name '*.nemo' | grep -v -- "-averaged.nemo" | xargs NeMo/scripts/checkpoint_averaging/checkpoint_averaging.py
NOTE: if yout get the following error `AttributeError: Can't get attribute '???' on <module '__main__' from '???'>`
use --import_fname_list <FILE> with all files that contains missing classes.
"""
import argparse
import glob
import importlib
import os
import sys
import torch
from tqdm.auto import tqdm
from nemo.core import ModelPT
from nemo.utils import logging, model_utils
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'model_fname_list',
metavar='NEMO_FILE_OR_FOLDER',
type=str,
nargs='+',
help='Input .nemo files (or folders who contains them) to parse',
)
parser.add_argument(
'--import_fname_list',
metavar='FILE',
type=str,
nargs='+',
default=[],
help='A list of Python file names to "from FILE import *" (Needed when some classes were defined in __main__ of a script)',
)
parser.add_argument(
'--class_path', type=str, default='', help='A path to class "module.submodule.class" (if given)',
)
args = parser.parse_args()
logging.info(
f"\n\nIMPORTANT:\nIf you get the following error:\n\t(AttributeError: Can't get attribute '???' on <module '__main__' from '???'>)\nuse:\n\t--import_fname_list\nfor all files that contain missing classes.\n\n"
)
for fn in args.import_fname_list:
logging.info(f"Importing * from {fn}")
sys.path.insert(0, os.path.dirname(fn))
globals().update(importlib.import_module(os.path.splitext(os.path.basename(fn))[0]).__dict__)
device = torch.device("cpu")
# loop over all folders with .nemo files (or .nemo files)
for model_fname_i, model_fname in enumerate(args.model_fname_list):
if not model_fname.endswith(".nemo"):
# assume model_fname is a folder which contains a .nemo file (filter .nemo files which matches with "*-averaged.nemo")
nemo_files = list(
filter(lambda fn: not fn.endswith("-averaged.nemo"), glob.glob(os.path.join(model_fname, "*.nemo")))
)
if len(nemo_files) != 1:
raise RuntimeError(f"Expected exactly one .nemo file but discovered {len(nemo_files)} .nemo files")
model_fname = nemo_files[0]
model_folder_path = os.path.dirname(model_fname)
fn, fe = os.path.splitext(model_fname)
avg_model_fname = f"{fn}-averaged{fe}"
logging.info(f"\n===> [{model_fname_i+1} / {len(args.model_fname_list)}] Parsing folder {model_folder_path}\n")
# restore model from .nemo file path
model_cfg = ModelPT.restore_from(restore_path=model_fname, return_config=True)
if args.class_path:
classpath = args.class_path
else:
classpath = model_cfg.target # original class path
imported_class = model_utils.import_class_by_path(classpath)
logging.info(f"Loading model {model_fname}")
nemo_model = imported_class.restore_from(restore_path=model_fname, map_location=device)
# search for all checkpoints (ignore -last.ckpt)
checkpoint_paths = [
os.path.join(model_folder_path, x)
for x in os.listdir(model_folder_path)
if x.endswith('.ckpt') and not x.endswith('-last.ckpt')
]
""" < Checkpoint Averaging Logic > """
# load state dicts
n = len(checkpoint_paths)
avg_state = None
logging.info(f"Averaging {n} checkpoints ...")
for ix, path in enumerate(tqdm(checkpoint_paths, total=n, desc='Averaging checkpoints')):
checkpoint = torch.load(path, map_location=device)
if 'state_dict' in checkpoint:
checkpoint = checkpoint['state_dict']
else:
raise RuntimeError(f"Checkpoint from {path} does not include a state_dict.")
if ix == 0:
# Initial state
avg_state = checkpoint
logging.info(f"Initialized average state dict with checkpoint:\n\t{path}")
else:
# Accumulated state
for k in avg_state:
avg_state[k] = avg_state[k] + checkpoint[k]
logging.info(f"Updated average state dict with state from checkpoint:\n\t{path}")
for k in avg_state:
if str(avg_state[k].dtype).startswith("torch.int"):
# For int type, not averaged, but only accumulated.
# e.g. BatchNorm.num_batches_tracked
pass
else:
avg_state[k] = avg_state[k] / n
# restore merged weights into model
nemo_model.load_state_dict(avg_state, strict=True)
# Save model
logging.info(f"Saving average model to:\n\t{avg_model_fname}")
nemo_model.save_to(avg_model_fname)
if __name__ == '__main__':
main()