Tom Aarsen commited on
Commit
b95119c
·
1 Parent(s): cf10b70

Revert inadvertent config, tokenizer updates

Browse files

This reverts commit dc78db37e83f9a6b4916554ef3776819a24b7cb0.

Files changed (6) hide show
  1. README.md +68 -68
  2. config.json +36 -40
  3. merges.txt +1 -1
  4. special_tokens_map.json +1 -51
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +1 -65
README.md CHANGED
@@ -1,69 +1,69 @@
1
- ---
2
- language: en
3
- pipeline_tag: zero-shot-classification
4
- tags:
5
- - transformers
6
- datasets:
7
- - nyu-mll/multi_nli
8
- - stanfordnlp/snli
9
- metrics:
10
- - accuracy
11
- license: apache-2.0
12
- base_model:
13
- - nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large
14
- library_name: sentence-transformers
15
- ---
16
-
17
- # Cross-Encoder for Natural Language Inference
18
- This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
19
-
20
- ## Training Data
21
- The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
22
-
23
- ## Performance
24
- For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
25
-
26
- ## Usage
27
-
28
- Pre-trained models can be used like this:
29
- ```python
30
- from sentence_transformers import CrossEncoder
31
- model = CrossEncoder('cross-encoder/nli-MiniLM2-L6-H768')
32
- scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
33
-
34
- #Convert scores to labels
35
- label_mapping = ['contradiction', 'entailment', 'neutral']
36
- labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
37
- ```
38
-
39
- ## Usage with Transformers AutoModel
40
- You can use the model also directly with Transformers library (without SentenceTransformers library):
41
- ```python
42
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
43
- import torch
44
-
45
- model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-MiniLM2-L6-H768')
46
- tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-MiniLM2-L6-H768')
47
-
48
- features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
49
-
50
- model.eval()
51
- with torch.no_grad():
52
- scores = model(**features).logits
53
- label_mapping = ['contradiction', 'entailment', 'neutral']
54
- labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
55
- print(labels)
56
- ```
57
-
58
- ## Zero-Shot Classification
59
- This model can also be used for zero-shot-classification:
60
- ```python
61
- from transformers import pipeline
62
-
63
- classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-MiniLM2-L6-H768')
64
-
65
- sent = "Apple just announced the newest iPhone X"
66
- candidate_labels = ["technology", "sports", "politics"]
67
- res = classifier(sent, candidate_labels)
68
- print(res)
69
  ```
 
1
+ ---
2
+ language: en
3
+ pipeline_tag: zero-shot-classification
4
+ tags:
5
+ - transformers
6
+ datasets:
7
+ - nyu-mll/multi_nli
8
+ - stanfordnlp/snli
9
+ metrics:
10
+ - accuracy
11
+ license: apache-2.0
12
+ base_model:
13
+ - nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large
14
+ library_name: sentence-transformers
15
+ ---
16
+
17
+ # Cross-Encoder for Natural Language Inference
18
+ This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
19
+
20
+ ## Training Data
21
+ The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
22
+
23
+ ## Performance
24
+ For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
25
+
26
+ ## Usage
27
+
28
+ Pre-trained models can be used like this:
29
+ ```python
30
+ from sentence_transformers import CrossEncoder
31
+ model = CrossEncoder('cross-encoder/nli-MiniLM2-L6-H768')
32
+ scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
33
+
34
+ #Convert scores to labels
35
+ label_mapping = ['contradiction', 'entailment', 'neutral']
36
+ labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
37
+ ```
38
+
39
+ ## Usage with Transformers AutoModel
40
+ You can use the model also directly with Transformers library (without SentenceTransformers library):
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
43
+ import torch
44
+
45
+ model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-MiniLM2-L6-H768')
46
+ tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-MiniLM2-L6-H768')
47
+
48
+ features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
49
+
50
+ model.eval()
51
+ with torch.no_grad():
52
+ scores = model(**features).logits
53
+ label_mapping = ['contradiction', 'entailment', 'neutral']
54
+ labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
55
+ print(labels)
56
+ ```
57
+
58
+ ## Zero-Shot Classification
59
+ This model can also be used for zero-shot-classification:
60
+ ```python
61
+ from transformers import pipeline
62
+
63
+ classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-MiniLM2-L6-H768')
64
+
65
+ sent = "Apple just announced the newest iPhone X"
66
+ candidate_labels = ["technology", "sports", "politics"]
67
+ res = classifier(sent, candidate_labels)
68
+ print(res)
69
  ```
config.json CHANGED
@@ -1,40 +1,36 @@
1
- {
2
- "architectures": [
3
- "RobertaForSequenceClassification"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "bos_token_id": 0,
7
- "classifier_dropout": null,
8
- "eos_token_id": 2,
9
- "gradient_checkpointing": false,
10
- "hidden_act": "gelu",
11
- "hidden_dropout_prob": 0.1,
12
- "hidden_size": 768,
13
- "id2label": {
14
- "0": "contradiction",
15
- "1": "entailment",
16
- "2": "neutral"
17
- },
18
- "initializer_range": 0.02,
19
- "intermediate_size": 3072,
20
- "label2id": {
21
- "contradiction": 0,
22
- "entailment": 1,
23
- "neutral": 2
24
- },
25
- "layer_norm_eps": 1e-05,
26
- "max_position_embeddings": 514,
27
- "model_type": "roberta",
28
- "num_attention_heads": 12,
29
- "num_hidden_layers": 6,
30
- "pad_token_id": 1,
31
- "position_embedding_type": "absolute",
32
- "sentence_transformers": {
33
- "activation_fn": "torch.nn.modules.linear.Identity",
34
- "version": "4.1.0.dev0"
35
- },
36
- "transformers_version": "4.52.0.dev0",
37
- "type_vocab_size": 1,
38
- "use_cache": true,
39
- "vocab_size": 50265
40
- }
 
1
+ {
2
+ "_name_or_path": "nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large",
3
+ "architectures": [
4
+ "RobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "contradiction",
15
+ "1": "entailment",
16
+ "2": "neutral"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "contradiction": 0,
22
+ "entailment": 1,
23
+ "neutral": 2
24
+ },
25
+ "layer_norm_eps": 1e-05,
26
+ "max_position_embeddings": 514,
27
+ "model_type": "roberta",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 6,
30
+ "pad_token_id": 1,
31
+ "position_embedding_type": "absolute",
32
+ "transformers_version": "4.6.1",
33
+ "type_vocab_size": 1,
34
+ "use_cache": true,
35
+ "vocab_size": 50265
36
+ }
 
 
 
 
merges.txt CHANGED
@@ -1,4 +1,4 @@
1
- #version: 0.2
2
  Ġ t
3
  Ġ a
4
  h e
 
1
+ #version: 0.2 - Trained by `huggingface/tokenizers`
2
  Ġ t
3
  Ġ a
4
  h e
special_tokens_map.json CHANGED
@@ -1,51 +1 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "<mask>",
25
- "lstrip": true,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "<unk>",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
- }
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1,65 +1 @@
1
- {
2
- "add_prefix_space": false,
3
- "added_tokens_decoder": {
4
- "0": {
5
- "content": "<s>",
6
- "lstrip": false,
7
- "normalized": false,
8
- "rstrip": false,
9
- "single_word": false,
10
- "special": true
11
- },
12
- "1": {
13
- "content": "<pad>",
14
- "lstrip": false,
15
- "normalized": false,
16
- "rstrip": false,
17
- "single_word": false,
18
- "special": true
19
- },
20
- "2": {
21
- "content": "</s>",
22
- "lstrip": false,
23
- "normalized": false,
24
- "rstrip": false,
25
- "single_word": false,
26
- "special": true
27
- },
28
- "3": {
29
- "content": "<unk>",
30
- "lstrip": false,
31
- "normalized": false,
32
- "rstrip": false,
33
- "single_word": false,
34
- "special": true
35
- },
36
- "50264": {
37
- "content": "<mask>",
38
- "lstrip": true,
39
- "normalized": false,
40
- "rstrip": false,
41
- "single_word": false,
42
- "special": true
43
- }
44
- },
45
- "bos_token": "<s>",
46
- "clean_up_tokenization_spaces": false,
47
- "cls_token": "<s>",
48
- "eos_token": "</s>",
49
- "errors": "replace",
50
- "extra_special_tokens": {},
51
- "mask_token": "<mask>",
52
- "max_length": 512,
53
- "model_max_length": 512,
54
- "pad_to_multiple_of": null,
55
- "pad_token": "<pad>",
56
- "pad_token_type_id": 0,
57
- "padding_side": "right",
58
- "sep_token": "</s>",
59
- "stride": 0,
60
- "tokenizer_class": "RobertaTokenizer",
61
- "trim_offsets": true,
62
- "truncation_side": "right",
63
- "truncation_strategy": "longest_first",
64
- "unk_token": "<unk>"
65
- }
 
1
+ {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "add_prefix_space": false, "errors": "replace", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": "<mask>", "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large"}