L-\d -> L\d
Browse files
README.md
CHANGED
@@ -14,8 +14,8 @@ The model can be used for Information Retrieval: Given a query, encode the query
|
|
14 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
15 |
import torch
|
16 |
|
17 |
-
model = AutoModelForSequenceClassification.from_pretrained('
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
19 |
|
20 |
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
21 |
|
@@ -31,7 +31,8 @@ with torch.no_grad():
|
|
31 |
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
|
32 |
```python
|
33 |
from sentence_transformers import CrossEncoder
|
34 |
-
|
|
|
35 |
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
36 |
```
|
37 |
|
@@ -43,15 +44,15 @@ In the following table, we provide various pre-trained Cross-Encoders together w
|
|
43 |
| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
|
44 |
| ------------- |:-------------| -----| --- |
|
45 |
| **Version 2 models** | | |
|
46 |
-
| cross-encoder/ms-marco-TinyBERT-
|
47 |
-
| cross-encoder/ms-marco-MiniLM-
|
48 |
-
| cross-encoder/ms-marco-MiniLM-
|
49 |
-
| cross-encoder/ms-marco-MiniLM-
|
50 |
-
| cross-encoder/ms-marco-MiniLM-
|
51 |
| **Version 1 models** | | |
|
52 |
-
| cross-encoder/ms-marco-TinyBERT-
|
53 |
-
| cross-encoder/ms-marco-TinyBERT-
|
54 |
-
| cross-encoder/ms-marco-TinyBERT-
|
55 |
| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
|
56 |
| **Other models** | | |
|
57 |
| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
|
|
|
14 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
15 |
import torch
|
16 |
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-TinyBERT-L2-v2')
|
19 |
|
20 |
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
|
21 |
|
|
|
31 |
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
|
32 |
```python
|
33 |
from sentence_transformers import CrossEncoder
|
34 |
+
|
35 |
+
model = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L2-v2', max_length=512)
|
36 |
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
37 |
```
|
38 |
|
|
|
44 |
| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |
|
45 |
| ------------- |:-------------| -----| --- |
|
46 |
| **Version 2 models** | | |
|
47 |
+
| cross-encoder/ms-marco-TinyBERT-L2-v2 | 69.84 | 32.56 | 9000
|
48 |
+
| cross-encoder/ms-marco-MiniLM-L2-v2 | 71.01 | 34.85 | 4100
|
49 |
+
| cross-encoder/ms-marco-MiniLM-L4-v2 | 73.04 | 37.70 | 2500
|
50 |
+
| cross-encoder/ms-marco-MiniLM-L6-v2 | 74.30 | 39.01 | 1800
|
51 |
+
| cross-encoder/ms-marco-MiniLM-L12-v2 | 74.31 | 39.02 | 960
|
52 |
| **Version 1 models** | | |
|
53 |
+
| cross-encoder/ms-marco-TinyBERT-L2 | 67.43 | 30.15 | 9000
|
54 |
+
| cross-encoder/ms-marco-TinyBERT-L4 | 68.09 | 34.50 | 2900
|
55 |
+
| cross-encoder/ms-marco-TinyBERT-L6 | 69.57 | 36.13 | 680
|
56 |
| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340
|
57 |
| **Other models** | | |
|
58 |
| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900
|