Medviser / model.py
criticalDanger's picture
Create model.py
df62751 verified
raw
history blame
473 Bytes
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=pd.read_csv('HeartDisease.csv')
print(data)
non_numeric_features = data.select_dtypes(include=['object']).columns.tolist()
print(non_numeric_features)