crislmfroes
commited on
Commit
•
16163af
1
Parent(s):
35e4ff6
Initial commit
Browse files- .gitattributes +1 -0
- README.md +82 -0
- args.yml +83 -0
- config.yml +21 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-FetchPickAndPlace-v2.zip +3 -0
- tqc-FetchPickAndPlace-v2/_stable_baselines3_version +1 -0
- tqc-FetchPickAndPlace-v2/actor.optimizer.pth +3 -0
- tqc-FetchPickAndPlace-v2/critic.optimizer.pth +3 -0
- tqc-FetchPickAndPlace-v2/data +128 -0
- tqc-FetchPickAndPlace-v2/ent_coef_optimizer.pth +3 -0
- tqc-FetchPickAndPlace-v2/policy.pth +3 -0
- tqc-FetchPickAndPlace-v2/pytorch_variables.pth +3 -0
- tqc-FetchPickAndPlace-v2/system_info.txt +9 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FetchPickAndPlace-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: FetchPickAndPlace-v2
|
16 |
+
type: FetchPickAndPlace-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -12.70 +/- 12.81
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **FetchPickAndPlace-v2**
|
25 |
+
This is a trained model of a **TQC** agent playing **FetchPickAndPlace-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env FetchPickAndPlace-v2 -orga crislmfroes -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo tqc --env FetchPickAndPlace-v2 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env FetchPickAndPlace-v2 -orga crislmfroes -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo tqc --env FetchPickAndPlace-v2 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo tqc --env FetchPickAndPlace-v2 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo tqc --env FetchPickAndPlace-v2 -f logs/ -orga crislmfroes
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 2048),
|
66 |
+
('buffer_size', 1000000),
|
67 |
+
('gamma', 0.95),
|
68 |
+
('learning_rate', 0.001),
|
69 |
+
('n_timesteps', 1000000.0),
|
70 |
+
('policy', 'MultiInputPolicy'),
|
71 |
+
('policy_kwargs', 'dict(net_arch=[512, 512, 512], n_critics=2)'),
|
72 |
+
('replay_buffer_class', 'HerReplayBuffer'),
|
73 |
+
('replay_buffer_kwargs',
|
74 |
+
"dict( goal_selection_strategy='future', n_sampled_goal=4, )"),
|
75 |
+
('tau', 0.05),
|
76 |
+
('normalize', False)])
|
77 |
+
```
|
78 |
+
|
79 |
+
# Environment Arguments
|
80 |
+
```python
|
81 |
+
{'render_mode': 'rgb_array'}
|
82 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- FetchPickAndPlace-v2
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_env_kwargs
|
13 |
+
- null
|
14 |
+
- - eval_episodes
|
15 |
+
- 5
|
16 |
+
- - eval_freq
|
17 |
+
- 25000
|
18 |
+
- - gym_packages
|
19 |
+
- []
|
20 |
+
- - hyperparams
|
21 |
+
- null
|
22 |
+
- - log_folder
|
23 |
+
- logs
|
24 |
+
- - log_interval
|
25 |
+
- -1
|
26 |
+
- - max_total_trials
|
27 |
+
- null
|
28 |
+
- - n_eval_envs
|
29 |
+
- 1
|
30 |
+
- - n_evaluations
|
31 |
+
- null
|
32 |
+
- - n_jobs
|
33 |
+
- 1
|
34 |
+
- - n_startup_trials
|
35 |
+
- 10
|
36 |
+
- - n_timesteps
|
37 |
+
- -1
|
38 |
+
- - n_trials
|
39 |
+
- 500
|
40 |
+
- - no_optim_plots
|
41 |
+
- false
|
42 |
+
- - num_threads
|
43 |
+
- -1
|
44 |
+
- - optimization_log_path
|
45 |
+
- null
|
46 |
+
- - optimize_hyperparameters
|
47 |
+
- false
|
48 |
+
- - progress
|
49 |
+
- false
|
50 |
+
- - pruner
|
51 |
+
- median
|
52 |
+
- - sampler
|
53 |
+
- tpe
|
54 |
+
- - save_freq
|
55 |
+
- -1
|
56 |
+
- - save_replay_buffer
|
57 |
+
- false
|
58 |
+
- - seed
|
59 |
+
- 2759187045
|
60 |
+
- - storage
|
61 |
+
- null
|
62 |
+
- - study_name
|
63 |
+
- null
|
64 |
+
- - tensorboard_log
|
65 |
+
- ''
|
66 |
+
- - track
|
67 |
+
- false
|
68 |
+
- - trained_agent
|
69 |
+
- ''
|
70 |
+
- - truncate_last_trajectory
|
71 |
+
- true
|
72 |
+
- - uuid
|
73 |
+
- false
|
74 |
+
- - vec_env
|
75 |
+
- dummy
|
76 |
+
- - verbose
|
77 |
+
- 1
|
78 |
+
- - wandb_entity
|
79 |
+
- null
|
80 |
+
- - wandb_project_name
|
81 |
+
- sb3
|
82 |
+
- - wandb_tags
|
83 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 2048
|
4 |
+
- - buffer_size
|
5 |
+
- 1000000
|
6 |
+
- - gamma
|
7 |
+
- 0.95
|
8 |
+
- - learning_rate
|
9 |
+
- 0.001
|
10 |
+
- - n_timesteps
|
11 |
+
- 1000000.0
|
12 |
+
- - policy
|
13 |
+
- MultiInputPolicy
|
14 |
+
- - policy_kwargs
|
15 |
+
- dict(net_arch=[512, 512, 512], n_critics=2)
|
16 |
+
- - replay_buffer_class
|
17 |
+
- HerReplayBuffer
|
18 |
+
- - replay_buffer_kwargs
|
19 |
+
- dict( goal_selection_strategy='future', n_sampled_goal=4, )
|
20 |
+
- - tau
|
21 |
+
- 0.05
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed367db2ab47186658b4c4836c1e2a4fdd1a585c929489057945b2fe5f529bff
|
3 |
+
size 595843
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -12.7, "std_reward": 12.814444974324873, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-19T11:17:33.928883"}
|
tqc-FetchPickAndPlace-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce75f14b54ca5b6d2fa8d88f8221267149961937658c934a54edb3cd63370d8a
|
3 |
+
size 24421581
|
tqc-FetchPickAndPlace-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.3.0a1
|
tqc-FetchPickAndPlace-v2/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3af7673c45d858fe486929056bc1c1fedf52e3987d03d534c38b91c1b9944a36
|
3 |
+
size 4374908
|
tqc-FetchPickAndPlace-v2/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cbe5b3f1dcac60ea7c6ec1cebaa241314beed6f87f0e471ab4862e0f94a36c4
|
3 |
+
size 8918534
|
tqc-FetchPickAndPlace-v2/data
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x7fc95924b520>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc9592428c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"net_arch": [
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512
|
17 |
+
],
|
18 |
+
"n_critics": 2,
|
19 |
+
"use_sde": false
|
20 |
+
},
|
21 |
+
"num_timesteps": 1000000,
|
22 |
+
"_total_timesteps": 1000000,
|
23 |
+
"_num_timesteps_at_start": 0,
|
24 |
+
"seed": 0,
|
25 |
+
"action_noise": null,
|
26 |
+
"start_time": 1705622865696400921,
|
27 |
+
"learning_rate": {
|
28 |
+
":type:": "<class 'function'>",
|
29 |
+
":serialized:": "gAWV2gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2Zib3QvbWluaWZvcmdlMy9lbnZzL3ByaC1jcmlzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUvZmJvdC9taW5pZm9yZ2UzL2VudnMvcHJoLWNyaXMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
30 |
+
},
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": {
|
38 |
+
":type:": "<class 'collections.OrderedDict'>",
|
39 |
+
":serialized:": "gAWV8wEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhgAAAAAAAAAuU9BrjTL9j/hF1HYPqvqPzMrMkirL9s/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolhgAAAAAAAAAVFaex/ma9j+XicLKt8bqPxUUo9tHLts/lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWyAAAAAAAAABGwt/AIRbyP3/JYxhDte4/ttyO68K82j+5T0GuNMv2P+EXUdg+q+o/MysySKsv2z/MNYa1S9TSP3jGSgARKMC/QJ/TKBe6fD9xkJoVlwemP3Qtmj5m1qk/vALFBRaOpj2N+rUaG+Kovf74FSxL1Lg/dB5vMqvtXT/rG0jAgzB6v5L5vqMZwiQ/bEGYvxyVmL1ytswqtB6bPSimmtaBBVm8kERkMqvtXb9qkUrAgzB6PwFBeqIZwiS/IIRSgzwEfb9KM2amgu1wP5RoDksBSxmGlGgSdJRSlHUu",
|
40 |
+
"achieved_goal": "[[1.42461079 0.83340399 0.42478449]]",
|
41 |
+
"desired_goal": "[[1.41283586 0.83675756 0.42469975]]",
|
42 |
+
"observation": "[[ 1.13040328e+00 9.59626720e-01 4.17771082e-01 1.42461079e+00\n 8.33403990e-01 4.24784489e-01 2.94207504e-01 -1.26222730e-01\n 7.01340720e-03 4.30266584e-02 5.04638626e-02 1.02568372e-11\n -1.13155811e-11 9.69893439e-02 1.82668417e-03 -6.39392343e-03\n 1.58372526e-04 -5.58940654e-12 6.16635967e-12 -5.42567563e-18\n -1.82668417e-03 6.39392343e-03 -1.58372525e-04 -7.08411825e-03\n 4.13275752e-03]]"
|
43 |
+
},
|
44 |
+
"_episode_num": 20000,
|
45 |
+
"use_sde": false,
|
46 |
+
"sde_sample_freq": -1,
|
47 |
+
"_current_progress_remaining": 0.0,
|
48 |
+
"_stats_window_size": 100,
|
49 |
+
"ep_info_buffer": {
|
50 |
+
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCQAAAAAAACMAWyUSzKMAXSUR0DckAk2NvOydX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DckGlpUPxydX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DckMl6iTMadX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DckSnLU1AJdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DckYnEJjUedX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DckepD6WPcdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0Dckkqbd8ArdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0Dckqpcry2AdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0Dckwnxc3VDdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0Dck2mJqIrOdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0Dck8lOwgTzdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DclClC1JDmdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DclIjOVxCIdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DclOjjebd8dX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DclUkg1WKedX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DclakZm7J5dX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DclgkgfU4JdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DclmjEZR8/dX2UKGgGR8AcAAAAAAAAaAdLMmgIR0Dclsi6K+BZdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DclyjMkhRqdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0Dcl4kENe+mdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0Dcl+knmaH9dX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DcmEkT+NtJdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DcmKizlcQidX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DcmQkC4jKQdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DcmWjZnL7odX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DcmckGD+R6dX2UKGgGR8AqAAAAAAAAaAdLMmgIR0DcmihiRW92dX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DcmohtxdY5dX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DcmugmICU5dX2UKGgGR8AgAAAAAAAAaAdLMmgIR0Dcm0fk7wKCdX2UKGgGR8AQAAAAAAAAaAdLMmgIR0Dcm6cbp/wzdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DcnAa/20zCdX2UKGgGR8AAAAAAAAAAaAdLMmgIR0DcnGaMERradX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DcnMZ8NQTFdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DcnSawmmcfdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DcnYZyimEXdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DcneX7DVH4dX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DcnkYknkT6dX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DcnqagYgq3dX2UKGgGR8AxAAAAAAAAaAdLMmgIR0DcnwbmDDjzdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0Dcn2aB9TgmdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0Dcn8YPmPo3dX2UKGgGR8AIAAAAAAAAaAdLMmgIR0DcoCXLX+VDdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DcoIXzSThYdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DcoOWj4593dX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DcoUTGHYYjdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DcoaR9iMHbdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DcogQlE7W/dX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DcomvqoqCpdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DcosrltCRfdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0Dcoyq/O+qSdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0Dco4pWjoIOdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0Dco+n+2mYTdX2UKGgGR8AQAAAAAAAAaAdLMmgIR0DcpEoiKR+0dX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DcpKpXT3IudX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DcpQpGtp22dX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DcpWm79Q40dX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DcpcmuzQeFdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DcpinwSamXdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0Dcpol4SpR5dX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DcpunEehf0dX2UKGgGR8AgAAAAAAAAaAdLMmgIR0Dcp0lwvQF+dX2UKGgGR8AQAAAAAAAAaAdLMmgIR0Dcp6ltYSxrdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DcqAj/IbOvdX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DcqGhjEvTPdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DcqMfsTnJUdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DcqSfTAnD0dX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DcqYgTQE6ldX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DcqegZDRdAdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DcqkgqYqoZdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0Dcqqg2l2vCdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0Dcqwg5imVJdX2UKGgGR8AQAAAAAAAAaAdLMmgIR0Dcq2ghq0tzdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0Dcq8eyu6mPdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DcrCdOJtSAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DcrIcPxx1gdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DcrOb1J17qdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DcrUbKT0QLdX2UKGgGR8AQAAAAAAAAaAdLMmgIR0DcraZz3h4udX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DcrgZaTwDvdX2UKGgGR8A0AAAAAAAAaAdLMmgIR0DcrmZloUSJdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DcrsYVLzwudX2UKGgGR8BHgAAAAAAAaAdLMmgIR0DcryYZn+Q2dX2UKGgGR8AmAAAAAAAAaAdLMmgIR0Dcr4Y0ALiNdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0Dcr+ZuyeI3dX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DcsEauEEkjdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DcsKZUfgaWdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DcsQaXfIjodX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DcsWZePaL5dX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DcscZ1jiGWdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DcsiZyZKFqdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DcsoZkDp1SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DcsuYb961LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Dcs0WgUUO/dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0Dcs6W1+iJwdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DctAXx4IKMdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DctGY7GNrCdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DctMYnlXA/dX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DctSWrzXjEdWUu"
|
52 |
+
},
|
53 |
+
"ep_success_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWVUwYAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwGc2NhbGFylJOUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAAAAlIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAAAAlIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAAAAlIaUUpRoB2gNQwQAAAAAlIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRoB2gNQwQAAIA/lIaUUpRlLg=="
|
56 |
+
},
|
57 |
+
"_n_updates": 999900,
|
58 |
+
"observation_space": {
|
59 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
60 |
+
":serialized:": "gAWVYAUAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAAAAJRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAAAAACUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYYAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoFksDhZRoJHSUUpSMBGhpZ2iUaBwolhgAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGWgcKJYDAAAAAAAAAAAAAJRoIEsDhZRoJHSUUpRoJ2gcKJYDAAAAAAAAAAAAAJRoIEsDhZRoJHSUUpRoLEsDhZRoLmgcKJYYAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoFksDhZRoJHSUUpRoM2gcKJYYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoFksDhZRoJHSUUpRoOIwELWluZpRoOowDaW5mlGg8TnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBZoGWgcKJYZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCBLGYWUaCR0lFKUaCdoHCiWGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGggSxmFlGgkdJRSlGgsSxmFlGguaBwolsgAAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaBZLGYWUaCR0lFKUaDNoHCiWyAAAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoFksZhZRoJHSUUpRoOIwELWluZpRoOowDaW5mlGg8TnVidWgsTmgQTmg8TnViLg==",
|
61 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-inf, inf, (3,), float64)), ('desired_goal', Box(-inf, inf, (3,), float64)), ('observation', Box(-inf, inf, (25,), float64))])",
|
62 |
+
"_shape": null,
|
63 |
+
"dtype": null,
|
64 |
+
"_np_random": null
|
65 |
+
},
|
66 |
+
"action_space": {
|
67 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
68 |
+
":serialized:": "gAWVagIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
69 |
+
"dtype": "float32",
|
70 |
+
"bounded_below": "[ True True True True]",
|
71 |
+
"bounded_above": "[ True True True True]",
|
72 |
+
"_shape": [
|
73 |
+
4
|
74 |
+
],
|
75 |
+
"low": "[-1. -1. -1. -1.]",
|
76 |
+
"high": "[1. 1. 1. 1.]",
|
77 |
+
"low_repr": "-1.0",
|
78 |
+
"high_repr": "1.0",
|
79 |
+
"_np_random": "Generator(PCG64)"
|
80 |
+
},
|
81 |
+
"n_envs": 1,
|
82 |
+
"buffer_size": 1,
|
83 |
+
"batch_size": 2048,
|
84 |
+
"learning_starts": 100,
|
85 |
+
"tau": 0.05,
|
86 |
+
"gamma": 0.95,
|
87 |
+
"gradient_steps": 1,
|
88 |
+
"optimize_memory_usage": false,
|
89 |
+
"replay_buffer_class": {
|
90 |
+
":type:": "<class 'abc.ABCMeta'>",
|
91 |
+
":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
|
92 |
+
"__module__": "stable_baselines3.her.her_replay_buffer",
|
93 |
+
"__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
|
94 |
+
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
|
95 |
+
"__init__": "<function HerReplayBuffer.__init__ at 0x7fc959ddd990>",
|
96 |
+
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7fc959ddda20>",
|
97 |
+
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7fc959dddab0>",
|
98 |
+
"set_env": "<function HerReplayBuffer.set_env at 0x7fc959dddb40>",
|
99 |
+
"add": "<function HerReplayBuffer.add at 0x7fc959dddbd0>",
|
100 |
+
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7fc959dddc60>",
|
101 |
+
"sample": "<function HerReplayBuffer.sample at 0x7fc959dddcf0>",
|
102 |
+
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7fc959dddd80>",
|
103 |
+
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7fc959ddde10>",
|
104 |
+
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7fc959dddea0>",
|
105 |
+
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7fc959dddf30>",
|
106 |
+
"__abstractmethods__": "frozenset()",
|
107 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc959de33c0>"
|
108 |
+
},
|
109 |
+
"replay_buffer_kwargs": {
|
110 |
+
"goal_selection_strategy": "future",
|
111 |
+
"n_sampled_goal": 4
|
112 |
+
},
|
113 |
+
"train_freq": {
|
114 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
115 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
116 |
+
},
|
117 |
+
"use_sde_at_warmup": false,
|
118 |
+
"target_entropy": -4.0,
|
119 |
+
"ent_coef": "auto",
|
120 |
+
"target_update_interval": 1,
|
121 |
+
"top_quantiles_to_drop_per_net": 2,
|
122 |
+
"lr_schedule": {
|
123 |
+
":type:": "<class 'function'>",
|
124 |
+
":serialized:": "gAWV2gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2Zib3QvbWluaWZvcmdlMy9lbnZzL3ByaC1jcmlzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUvZmJvdC9taW5pZm9yZ2UzL2VudnMvcHJoLWNyaXMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
125 |
+
},
|
126 |
+
"batch_norm_stats": [],
|
127 |
+
"batch_norm_stats_target": []
|
128 |
+
}
|
tqc-FetchPickAndPlace-v2/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fa6746166bf8ab65293cec352d58f806d4dff125a080b20547fa275cc38c7ea
|
3 |
+
size 1940
|
tqc-FetchPickAndPlace-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db2e6c43bbb3d5612175c7ae9497fbf4b778c75169fc675fc43b39cb59a99384
|
3 |
+
size 11103640
|
tqc-FetchPickAndPlace-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e60926d9dca528b00a889cfc83ca796b87bd803f0ac5402130f4056f3e031a27
|
3 |
+
size 1180
|
tqc-FetchPickAndPlace-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-91-generic-x86_64-with-glibc2.31 # 101~20.04.1-Ubuntu SMP Thu Nov 16 14:22:28 UTC 2023
|
2 |
+
- Python: 3.10.13
|
3 |
+
- Stable-Baselines3: 2.3.0a1
|
4 |
+
- PyTorch: 2.1.2+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.3
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f79181806896b6d4e083eeab00f308bda0e036f9aeeb068d2c1d658200cc120
|
3 |
+
size 445528
|