Upload processor
Browse files- image_processing_basnet.py +0 -28
image_processing_basnet.py
CHANGED
@@ -239,34 +239,6 @@ class BASNetImageProcessor(BaseImageProcessor):
|
|
239 |
dn = (d - mi) / ((ma - mi) + torch.finfo(torch.float32).eps)
|
240 |
return dn
|
241 |
|
242 |
-
# prediction = _norm_output(prediction)
|
243 |
-
# prediction = prediction.squeeze()
|
244 |
-
# prediction_np = prediction.cpu().numpy()
|
245 |
-
|
246 |
-
# image = Image.fromarray(prediction_np * 255).convert("RGB")
|
247 |
-
# image = image.resize((width, height), resample=Image.Resampling.BILINEAR)
|
248 |
-
|
249 |
-
# return image
|
250 |
-
|
251 |
-
# breakpoint()
|
252 |
-
|
253 |
-
# output = F.interpolate(output, (height, width), mode="bilinear")
|
254 |
-
# output = output.squeeze(dim=0)
|
255 |
-
|
256 |
-
# output = _norm_output(output)
|
257 |
-
|
258 |
-
# # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
|
259 |
-
# output = output * 255 + 0.5
|
260 |
-
# output = output.clamp(0, 255)
|
261 |
-
|
262 |
-
# # shape: (C=1, W, H) -> (W, H, C=1)
|
263 |
-
# output = output.permute(1, 2, 0)
|
264 |
-
# # shape: (W, H, C=3)
|
265 |
-
# output = output.repeat(1, 1, 3)
|
266 |
-
|
267 |
-
# output_np = output.cpu().numpy().astype(np.uint8)
|
268 |
-
# return Image.fromarray(output_np)
|
269 |
-
|
270 |
prediction = _norm_prediction(prediction)
|
271 |
prediction = prediction.squeeze()
|
272 |
prediction = prediction * 255 + 0.5
|
|
|
239 |
dn = (d - mi) / ((ma - mi) + torch.finfo(torch.float32).eps)
|
240 |
return dn
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
prediction = _norm_prediction(prediction)
|
243 |
prediction = prediction.squeeze()
|
244 |
prediction = prediction * 255 + 0.5
|