Artyom commited on
Commit
82567db
·
verified ·
1 Parent(s): 1b5ee0e
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. MiAlgo/Dockerfile +9 -0
  2. MiAlgo/README.txt +16 -0
  3. MiAlgo/__pycache__/net_torch.cpython-36.pyc +0 -0
  4. MiAlgo/__pycache__/network.cpython-36.pyc +0 -0
  5. MiAlgo/__pycache__/network.cpython-37.pyc +0 -0
  6. MiAlgo/__pycache__/network.cpython-38.pyc +0 -0
  7. MiAlgo/__pycache__/network_raw_denoise.cpython-36.pyc +0 -0
  8. MiAlgo/__pycache__/network_raw_denoise.cpython-38.pyc +0 -0
  9. MiAlgo/__pycache__/tf2onnx.cpython-36.pyc +0 -0
  10. MiAlgo/__pycache__/unet.cpython-36.pyc +0 -0
  11. MiAlgo/__pycache__/unet.cpython-37.pyc +0 -0
  12. MiAlgo/__pycache__/unet.cpython-38.pyc +0 -0
  13. MiAlgo/__pycache__/utils.cpython-36.pyc +0 -0
  14. MiAlgo/__pycache__/utils.cpython-37.pyc +0 -0
  15. MiAlgo/__pycache__/utils.cpython-38.pyc +0 -0
  16. MiAlgo/assets/pretrained/hub/checkpoints/squeezenet1_1-f364aa15.pth +3 -0
  17. MiAlgo/auxiliary/__pycache__/settings.cpython-36.pyc +0 -0
  18. MiAlgo/auxiliary/__pycache__/settings.cpython-37.pyc +0 -0
  19. MiAlgo/auxiliary/__pycache__/settings.cpython-38.pyc +0 -0
  20. MiAlgo/auxiliary/__pycache__/utils.cpython-36.pyc +0 -0
  21. MiAlgo/auxiliary/__pycache__/utils.cpython-37.pyc +0 -0
  22. MiAlgo/auxiliary/__pycache__/utils.cpython-38.pyc +0 -0
  23. MiAlgo/auxiliary/settings.py +47 -0
  24. MiAlgo/auxiliary/utils.py +107 -0
  25. MiAlgo/checkpoint/nn_enhance.pth +3 -0
  26. MiAlgo/checkpoint/raw_denoise.pth +3 -0
  27. MiAlgo/classes/core/Evaluator.py +49 -0
  28. MiAlgo/classes/core/Loss.py +13 -0
  29. MiAlgo/classes/core/LossTracker.py +16 -0
  30. MiAlgo/classes/core/Model.py +43 -0
  31. MiAlgo/classes/core/__pycache__/Evaluator.cpython-36.pyc +0 -0
  32. MiAlgo/classes/core/__pycache__/Evaluator.cpython-37.pyc +0 -0
  33. MiAlgo/classes/core/__pycache__/Evaluator.cpython-38.pyc +0 -0
  34. MiAlgo/classes/core/__pycache__/Loss.cpython-36.pyc +0 -0
  35. MiAlgo/classes/core/__pycache__/Loss.cpython-37.pyc +0 -0
  36. MiAlgo/classes/core/__pycache__/Loss.cpython-38.pyc +0 -0
  37. MiAlgo/classes/core/__pycache__/Model.cpython-36.pyc +0 -0
  38. MiAlgo/classes/core/__pycache__/Model.cpython-37.pyc +0 -0
  39. MiAlgo/classes/core/__pycache__/Model.cpython-38.pyc +0 -0
  40. MiAlgo/classes/data/ColorCheckerDataset.py +52 -0
  41. MiAlgo/classes/data/DataAugmenter.py +152 -0
  42. MiAlgo/classes/data/__pycache__/ColorCheckerDataset.cpython-36.pyc +0 -0
  43. MiAlgo/classes/data/__pycache__/ColorCheckerDataset.cpython-37.pyc +0 -0
  44. MiAlgo/classes/data/__pycache__/ColorCheckerDataset.cpython-38.pyc +0 -0
  45. MiAlgo/classes/data/__pycache__/DataAugmenter.cpython-36.pyc +0 -0
  46. MiAlgo/classes/data/__pycache__/DataAugmenter.cpython-37.pyc +0 -0
  47. MiAlgo/classes/data/__pycache__/DataAugmenter.cpython-38.pyc +0 -0
  48. MiAlgo/classes/fc4/FC4.py +63 -0
  49. MiAlgo/classes/fc4/ModelFC4.py +44 -0
  50. MiAlgo/classes/fc4/__pycache__/FC4.cpython-36.pyc +0 -0
MiAlgo/Dockerfile ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ FROM q935970314/mialgo:2022
2
+
3
+ COPY . /workdir/
4
+
5
+ RUN export PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin && pip install grayness_index_python
6
+
7
+ WORKDIR /workdir/
8
+
9
+
MiAlgo/README.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Run the code to build docker and process the night image:
2
+
3
+ docker build -t mialgo24 .
4
+
5
+ cd DATA_FOLDER_PATH
6
+ docker run -it --rm --gpus all -v $(pwd)/data:/data mialgo24 ./run.sh
7
+
8
+
9
+ Please note that the "--gpus all" parameter is used and ensure that the model is running on the GPU.
10
+ We first load all images into memory. If the memory explodes, please process less than 50 images at a time.
11
+
12
+ We will open source the code after the competition ends.
13
+
14
+ If you have any questions, please contact me in time, thank you.
15
+
16
+ Email:liushuai21@xiaomi.com
MiAlgo/__pycache__/net_torch.cpython-36.pyc ADDED
Binary file (4.68 kB). View file
 
MiAlgo/__pycache__/network.cpython-36.pyc ADDED
Binary file (16.4 kB). View file
 
MiAlgo/__pycache__/network.cpython-37.pyc ADDED
Binary file (16.1 kB). View file
 
MiAlgo/__pycache__/network.cpython-38.pyc ADDED
Binary file (16.7 kB). View file
 
MiAlgo/__pycache__/network_raw_denoise.cpython-36.pyc ADDED
Binary file (5.28 kB). View file
 
MiAlgo/__pycache__/network_raw_denoise.cpython-38.pyc ADDED
Binary file (5.31 kB). View file
 
MiAlgo/__pycache__/tf2onnx.cpython-36.pyc ADDED
Binary file (1.12 kB). View file
 
MiAlgo/__pycache__/unet.cpython-36.pyc ADDED
Binary file (3.68 kB). View file
 
MiAlgo/__pycache__/unet.cpython-37.pyc ADDED
Binary file (3.69 kB). View file
 
MiAlgo/__pycache__/unet.cpython-38.pyc ADDED
Binary file (3.65 kB). View file
 
MiAlgo/__pycache__/utils.cpython-36.pyc ADDED
Binary file (8.4 kB). View file
 
MiAlgo/__pycache__/utils.cpython-37.pyc ADDED
Binary file (8.29 kB). View file
 
MiAlgo/__pycache__/utils.cpython-38.pyc ADDED
Binary file (9.09 kB). View file
 
MiAlgo/assets/pretrained/hub/checkpoints/squeezenet1_1-f364aa15.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f364aa15cc776cd43e679ca0859f479db11ef4852a4e79bb237519f9d16617c5
3
+ size 4966400
MiAlgo/auxiliary/__pycache__/settings.cpython-36.pyc ADDED
Binary file (1.22 kB). View file
 
MiAlgo/auxiliary/__pycache__/settings.cpython-37.pyc ADDED
Binary file (1.2 kB). View file
 
MiAlgo/auxiliary/__pycache__/settings.cpython-38.pyc ADDED
Binary file (1.19 kB). View file
 
MiAlgo/auxiliary/__pycache__/utils.cpython-36.pyc ADDED
Binary file (4.6 kB). View file
 
MiAlgo/auxiliary/__pycache__/utils.cpython-37.pyc ADDED
Binary file (4.57 kB). View file
 
MiAlgo/auxiliary/__pycache__/utils.cpython-38.pyc ADDED
Binary file (4.59 kB). View file
 
MiAlgo/auxiliary/settings.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import torch
5
+
6
+
7
+ # --- Determinism (for reproducibility) ---
8
+
9
+ def make_deterministic(seed: int):
10
+ torch.manual_seed(seed)
11
+ np.random.seed(seed)
12
+ torch.backends.cudnn.benchmark = False
13
+
14
+
15
+ # --- Device (cpu or cuda:n) ---
16
+
17
+ DEVICE_TYPE = "cuda:0"
18
+
19
+
20
+ def get_device() -> torch.device:
21
+ if DEVICE_TYPE == "cpu":
22
+ print("\n Running on device 'cpu' \n")
23
+ return torch.device("cpu")
24
+
25
+ if re.match(r"\bcuda:\b\d+", DEVICE_TYPE):
26
+ if not torch.cuda.is_available():
27
+ print("\n WARNING: running on cpu since device {} is not available \n".format(DEVICE_TYPE))
28
+ return torch.device("cpu")
29
+
30
+ # print("\n Running on device '{}' \n".format(DEVICE_TYPE))
31
+ return torch.device(DEVICE_TYPE)
32
+
33
+ raise ValueError("ERROR: {} is not a valid device! Supported device are 'cpu' and 'cuda:n'".format(DEVICE_TYPE))
34
+
35
+
36
+ DEVICE = get_device()
37
+
38
+ # --- Model ---
39
+
40
+ # If set to False, a simpler summation pooling will be used
41
+ USE_CONFIDENCE_WEIGHTED_POOLING = True
42
+ if not USE_CONFIDENCE_WEIGHTED_POOLING:
43
+ print("\n WARN: confidence-weighted pooling option is set to False \n")
44
+
45
+ # Input size
46
+ TRAIN_IMG_W, TRAIN_IMG_H = 512, 512
47
+ TEST_IMG_W, TEST_IMG_H = 0, 0
MiAlgo/auxiliary/utils.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ from typing import Union, List, Tuple
4
+
5
+ import numpy as np
6
+ import torch
7
+ import torchvision.transforms.functional as F
8
+ from PIL.Image import Image
9
+ from scipy.spatial.distance import jensenshannon
10
+ from torch import Tensor
11
+ from torch.nn.functional import interpolate
12
+
13
+ from auxiliary.settings import DEVICE
14
+
15
+
16
+
17
+ def print_metrics(current_metrics: dict, best_metrics: dict):
18
+ print(" Mean ......... : {:.4f} (Best: {:.4f})".format(current_metrics["mean"], best_metrics["mean"]))
19
+ print(" Median ....... : {:.4f} (Best: {:.4f})".format(current_metrics["median"], best_metrics["median"]))
20
+ print(" Trimean ...... : {:.4f} (Best: {:.4f})".format(current_metrics["trimean"], best_metrics["trimean"]))
21
+ print(" Best 25% ..... : {:.4f} (Best: {:.4f})".format(current_metrics["bst25"], best_metrics["bst25"]))
22
+ print(" Worst 25% .... : {:.4f} (Best: {:.4f})".format(current_metrics["wst25"], best_metrics["wst25"]))
23
+ print(" Worst 5% ..... : {:.4f} (Best: {:.4f})".format(current_metrics["wst5"], best_metrics["wst5"]))
24
+
25
+
26
+ def correct(img: Image, illuminant: Tensor) -> Image:
27
+ """
28
+ Corrects the color of the illuminant of a linear image based on an estimated (linear) illuminant
29
+ @param img: a linear image
30
+ @param illuminant: a linear illuminant
31
+ @return: a non-linear color-corrected version of the input image
32
+ """
33
+ img = F.to_tensor(img).to(DEVICE)
34
+
35
+ # Correct the image
36
+ correction = illuminant.unsqueeze(2).unsqueeze(3) * torch.sqrt(Tensor([3])).to(DEVICE)
37
+ corrected_img = torch.div(img, correction + 1e-10)
38
+
39
+ # Normalize the image
40
+ max_img = torch.max(torch.max(torch.max(corrected_img, dim=1)[0], dim=1)[0], dim=1)[0] + 1e-10
41
+ max_img = max_img.unsqueeze(1).unsqueeze(1).unsqueeze(1)
42
+ normalized_img = torch.div(corrected_img, max_img)
43
+
44
+ return F.to_pil_image(linear_to_nonlinear(normalized_img).squeeze(), mode="RGB")
45
+
46
+
47
+ def linear_to_nonlinear(img: Union[np.array, Image, Tensor]) -> Union[np.array, Image, Tensor]:
48
+ if isinstance(img, np.ndarray):
49
+ return np.power(img, (1.0 / 2.2))
50
+ if isinstance(img, Tensor):
51
+ return torch.pow(img, 1.0 / 2.2)
52
+ return F.to_pil_image(torch.pow(F.to_tensor(img), 1.0 / 2.2).squeeze(), mode="RGB")
53
+
54
+
55
+ def normalize(img: np.ndarray) -> np.ndarray:
56
+ max_int = 65535.0
57
+ return np.clip(img, 0.0, max_int) * (1.0 / max_int)
58
+
59
+
60
+ def rgb_to_bgr(x: np.ndarray) -> np.ndarray:
61
+ return x[::-1]
62
+
63
+
64
+ def bgr_to_rgb(x: np.ndarray) -> np.ndarray:
65
+ return x[:, :, ::-1]
66
+
67
+
68
+ def hwc_to_chw(x: np.ndarray) -> np.ndarray:
69
+ """ Converts an image from height x width x channels to channels x height x width """
70
+ return x.transpose(2, 0, 1)
71
+
72
+
73
+ def scale(x: Tensor) -> Tensor:
74
+ """ Scales all values of a tensor between 0 and 1 """
75
+ x = x - x.min()
76
+ x = x / x.max()
77
+ return x
78
+
79
+
80
+ def rescale(x: Tensor, size: Tuple) -> Tensor:
81
+ """ Rescale tensor to image size for better visualization """
82
+ return interpolate(x, size, mode='bilinear')
83
+
84
+
85
+ def angular_error(x: Tensor, y: Tensor, safe_v: float = 0.999999) -> Tensor:
86
+ x, y = torch.nn.functional.normalize(x, dim=1), torch.nn.functional.normalize(y, dim=1)
87
+ dot = torch.clamp(torch.sum(x * y, dim=1), -safe_v, safe_v)
88
+ angle = torch.acos(dot) * (180 / math.pi)
89
+ return torch.mean(angle).item()
90
+
91
+
92
+ def tvd(pred: Tensor, label: Tensor) -> Tensor:
93
+ """
94
+ Total Variation Distance (TVD) is a distance measure for probability distributions
95
+ https://en.wikipedia.org/wiki/Total_variation_distance_of_probability_measures
96
+ """
97
+ return (Tensor([0.5]) * torch.abs(pred - label)).sum()
98
+
99
+
100
+ def jsd(p: List, q: List) -> float:
101
+ """
102
+ Jensen-Shannon Divergence (JSD) between two probability distributions as square of scipy's JS distance. Refs:
103
+ - https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jensenshannon.html
104
+ - https://stackoverflow.com/questions/15880133/jensen-shannon-divergence
105
+ """
106
+ return jensenshannon(p, q) ** 2
107
+
MiAlgo/checkpoint/nn_enhance.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37c37648922f149ebefcec8b4c32c687bbafacd1efd99e288b235aab6e834ad5
3
+ size 152303133
MiAlgo/checkpoint/raw_denoise.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a987213026b43e214196154494e5b54045721dea11dcb8e6f1f2d8e632445699
3
+ size 2072446
MiAlgo/classes/core/Evaluator.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class Evaluator:
5
+
6
+ def __init__(self):
7
+ monitored_metrics = ["mean", "median", "trimean", "bst25", "wst25", "wst5"]
8
+ self.__metrics = {}
9
+ self.__best_metrics = {m: 100.0 for m in monitored_metrics}
10
+ self.__errors = []
11
+
12
+ def add_error(self, error: float):
13
+ self.__errors.append(error)
14
+
15
+ def reset_errors(self):
16
+ self.__errors = []
17
+
18
+ def get_errors(self) -> list:
19
+ return self.__errors
20
+
21
+ def get_metrics(self) -> dict:
22
+ return self.__metrics
23
+
24
+ def get_best_metrics(self) -> dict:
25
+ return self.__best_metrics
26
+
27
+ def compute_metrics(self) -> dict:
28
+ self.__errors = sorted(self.__errors)
29
+ self.__metrics = {
30
+ "mean": np.mean(self.__errors),
31
+ "median": self.__g(0.5),
32
+ "trimean": 0.25 * (self.__g(0.25) + 2 * self.__g(0.5) + self.__g(0.75)),
33
+ "bst25": np.mean(self.__errors[:int(0.25 * len(self.__errors))]),
34
+ "wst25": np.mean(self.__errors[int(0.75 * len(self.__errors)):]),
35
+ "wst5": self.__g(0.95)
36
+ }
37
+ return self.__metrics
38
+
39
+ def update_best_metrics(self) -> dict:
40
+ self.__best_metrics["mean"] = self.__metrics["mean"]
41
+ self.__best_metrics["median"] = self.__metrics["median"]
42
+ self.__best_metrics["trimean"] = self.__metrics["trimean"]
43
+ self.__best_metrics["bst25"] = self.__metrics["bst25"]
44
+ self.__best_metrics["wst25"] = self.__metrics["wst25"]
45
+ self.__best_metrics["wst5"] = self.__metrics["wst5"]
46
+ return self.__best_metrics
47
+
48
+ def __g(self, f: float) -> float:
49
+ return np.percentile(self.__errors, f * 100)
MiAlgo/classes/core/Loss.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import Tensor
3
+
4
+
5
+ class Loss:
6
+ def __init__(self, device: torch.device):
7
+ self._device = device
8
+
9
+ def _compute(self, *args, **kwargs) -> Tensor:
10
+ pass
11
+
12
+ def __call__(self, *args, **kwargs):
13
+ return self._compute(*args).to(self._device)
MiAlgo/classes/core/LossTracker.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class LossTracker(object):
2
+
3
+ def __init__(self):
4
+ self.val, self.avg, self.sum, self.count = 0, 0, 0, 0
5
+
6
+ def reset(self):
7
+ self.val, self.avg, self.sum, self.count = 0, 0, 0, 0
8
+
9
+ def update(self, val: float, n: int = 1):
10
+ self.val = val
11
+ self.sum += val * n
12
+ self.count += n
13
+ self.avg = self.sum / self.count
14
+
15
+ def get_loss(self) -> float:
16
+ return self.avg
MiAlgo/classes/core/Model.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import torch
4
+ from torch import Tensor
5
+
6
+ from auxiliary.settings import DEVICE
7
+ from classes.losses.AngularLoss import AngularLoss
8
+
9
+
10
+ class Model:
11
+ def __init__(self):
12
+ self._device = DEVICE
13
+ self._criterion = AngularLoss(self._device)
14
+ self._optimizer = None
15
+ self._network = None
16
+
17
+ def print_network(self):
18
+ print("\n----------------------------------------------------------\n")
19
+ print(self._network)
20
+ print("\n----------------------------------------------------------\n")
21
+
22
+ def log_network(self, path_to_log: str):
23
+ open(os.path.join(path_to_log, "network.txt"), 'a+').write(str(self._network))
24
+
25
+ def get_loss(self, pred: Tensor, label: Tensor) -> Tensor:
26
+ return self._criterion(pred, label)
27
+
28
+ def train_mode(self):
29
+ self._network = self._network.train()
30
+
31
+ def evaluation_mode(self):
32
+ self._network = self._network.eval()
33
+
34
+ def save(self, path_to_log: str):
35
+ torch.save(self._network.state_dict(), os.path.join(path_to_log, "model.pth"))
36
+
37
+ def load(self, path_to_pretrained: str):
38
+ path_to_model = os.path.join(path_to_pretrained, "model.pth")
39
+ self._network.load_state_dict(torch.load(path_to_model, map_location=self._device))
40
+
41
+ def set_optimizer(self, learning_rate: float, optimizer_type: str = "adam"):
42
+ optimizers_map = {"adam": torch.optim.Adam, "rmsprop": torch.optim.RMSprop}
43
+ self._optimizer = optimizers_map[optimizer_type](self._network.parameters(), lr=learning_rate)
MiAlgo/classes/core/__pycache__/Evaluator.cpython-36.pyc ADDED
Binary file (2.37 kB). View file
 
MiAlgo/classes/core/__pycache__/Evaluator.cpython-37.pyc ADDED
Binary file (2.34 kB). View file
 
MiAlgo/classes/core/__pycache__/Evaluator.cpython-38.pyc ADDED
Binary file (2.42 kB). View file
 
MiAlgo/classes/core/__pycache__/Loss.cpython-36.pyc ADDED
Binary file (780 Bytes). View file
 
MiAlgo/classes/core/__pycache__/Loss.cpython-37.pyc ADDED
Binary file (763 Bytes). View file
 
MiAlgo/classes/core/__pycache__/Loss.cpython-38.pyc ADDED
Binary file (803 Bytes). View file
 
MiAlgo/classes/core/__pycache__/Model.cpython-36.pyc ADDED
Binary file (2.35 kB). View file
 
MiAlgo/classes/core/__pycache__/Model.cpython-37.pyc ADDED
Binary file (2.34 kB). View file
 
MiAlgo/classes/core/__pycache__/Model.cpython-38.pyc ADDED
Binary file (2.39 kB). View file
 
MiAlgo/classes/data/ColorCheckerDataset.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Tuple
3
+
4
+ import numpy as np
5
+ import scipy.io
6
+ import torch
7
+ import torch.utils.data as data
8
+
9
+ from auxiliary.utils import normalize, bgr_to_rgb, linear_to_nonlinear, hwc_to_chw
10
+ from classes.data.DataAugmenter import DataAugmenter
11
+
12
+
13
+ class ColorCheckerDataset(data.Dataset):
14
+
15
+ def __init__(self, train: bool = True, folds_num: int = 1):
16
+
17
+ self.__train = train
18
+ self.__da = DataAugmenter()
19
+
20
+ path_to_folds = os.path.join("dataset", "folds.mat")
21
+ path_to_metadata = os.path.join("dataset", "metadata.txt")
22
+ self.__path_to_data = os.path.join("dataset", "preprocessed", "numpy_data")
23
+ self.__path_to_label = os.path.join("dataset", "preprocessed", "numpy_labels")
24
+
25
+ folds = scipy.io.loadmat(path_to_folds)
26
+ img_idx = folds["tr_split" if self.__train else "te_split"][0][folds_num][0]
27
+
28
+ metadata = open(path_to_metadata, 'r').readlines()
29
+ self.__fold_data = [metadata[i - 1] for i in img_idx]
30
+
31
+ def __getitem__(self, index: int) -> Tuple:
32
+ file_name = self.__fold_data[index].strip().split(' ')[1]
33
+ img = np.array(np.load(os.path.join(self.__path_to_data, file_name + '.npy')), dtype='float32')
34
+ illuminant = np.array(np.load(os.path.join(self.__path_to_label, file_name + '.npy')), dtype='float32')
35
+
36
+ if self.__train:
37
+ img, illuminant = self.__da.augment(img, illuminant)
38
+ else:
39
+ img = self.__da.crop(img)
40
+
41
+ img = hwc_to_chw(linear_to_nonlinear(bgr_to_rgb(normalize(img))))
42
+
43
+ img = torch.from_numpy(img.copy())
44
+ illuminant = torch.from_numpy(illuminant.copy())
45
+
46
+ if not self.__train:
47
+ img = img.type(torch.FloatTensor)
48
+
49
+ return img, illuminant, file_name
50
+
51
+ def __len__(self) -> int:
52
+ return len(self.__fold_data)
MiAlgo/classes/data/DataAugmenter.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+
4
+ import cv2
5
+ import numpy as np
6
+
7
+ from auxiliary.settings import TRAIN_IMG_H, TRAIN_IMG_W, TEST_IMG_H, TEST_IMG_W
8
+ from auxiliary.utils import rgb_to_bgr
9
+
10
+
11
+ class DataAugmenter:
12
+
13
+ def __init__(self):
14
+ # Input Size of the fully-convolutional network (SqueezeNet)
15
+ self.__train_size = (TRAIN_IMG_H, TRAIN_IMG_W)
16
+ self.__test_size = (TEST_IMG_H, TEST_IMG_W)
17
+
18
+ # Rotation angle
19
+ self.__angle = 60
20
+
21
+ # Patch scale
22
+ self.__scale = [0.1, 1.0]
23
+
24
+ # Color rescaling
25
+ self.__color = 0.8
26
+
27
+ @staticmethod
28
+ def __rotate_image(image: np.ndarray, angle: float) -> np.ndarray:
29
+ """
30
+ Rotates an OpenCV 2 / NumPy image about it's centre by the given angle (in degrees).
31
+ The returned image will be large enough to hold the entire new image, with a black background
32
+ """
33
+
34
+ # Get the image size (note: NumPy stores image matrices backwards)
35
+ image_size = (image.shape[1], image.shape[0])
36
+ image_center = tuple(np.array(image_size) / 2)
37
+
38
+ # Convert the OpenCV 3x2 rotation matrix to 3x3
39
+ rot_mat = np.vstack([cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]])
40
+
41
+ rot_mat_no_translate = np.matrix(rot_mat[0:2, 0:2])
42
+
43
+ image_w2, image_h2 = image_size[0] * 0.5, image_size[1] * 0.5
44
+
45
+ # Obtain the rotated coordinates of the image corners
46
+ rotated_coords = [
47
+ (np.array([-image_w2, image_h2]) * rot_mat_no_translate).A[0],
48
+ (np.array([image_w2, image_h2]) * rot_mat_no_translate).A[0],
49
+ (np.array([-image_w2, -image_h2]) * rot_mat_no_translate).A[0],
50
+ (np.array([image_w2, -image_h2]) * rot_mat_no_translate).A[0]
51
+ ]
52
+
53
+ # Find the size of the new image
54
+ x_coords = [pt[0] for pt in rotated_coords]
55
+ x_pos, x_neg = [x for x in x_coords if x > 0], [x for x in x_coords if x < 0]
56
+
57
+ y_coords = [pt[1] for pt in rotated_coords]
58
+ y_pos, y_neg = [y for y in y_coords if y > 0], [y for y in y_coords if y < 0]
59
+
60
+ right_bound, left_bound, top_bound, bot_bound = max(x_pos), min(x_neg), max(y_pos), min(y_neg)
61
+ new_w, new_h = int(abs(right_bound - left_bound)), int(abs(top_bound - bot_bound))
62
+
63
+ # We require a translation matrix to keep the image centred
64
+ trans_mat = np.matrix([[1, 0, int(new_w * 0.5 - image_w2)], [0, 1, int(new_h * 0.5 - image_h2)], [0, 0, 1]])
65
+
66
+ # Compute the transform for the combined rotation and translation
67
+ affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
68
+
69
+ # Apply the transform
70
+ return cv2.warpAffine(image, affine_mat, (new_w, new_h), flags=cv2.INTER_LINEAR)
71
+
72
+ @staticmethod
73
+ def __largest_rotated_rect(w: float, h: float, angle: float) -> tuple:
74
+ """
75
+ Given a rectangle of size w x h that has been rotated by 'angle' (in radians), computes the width and height of
76
+ the largest possible axis-aligned rectangle within the rotated rectangle.
77
+
78
+ Original JS code by 'Andri' and Magnus Hoff from Stack Overflow. Converted to Python by Aaron Snoswell
79
+ """
80
+ quadrant = int(math.floor(angle / (math.pi / 2))) & 3
81
+ sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
82
+ alpha = (sign_alpha % math.pi + math.pi) % math.pi
83
+
84
+ bb_w = w * math.cos(alpha) + h * math.sin(alpha)
85
+ bb_h = w * math.sin(alpha) + h * math.cos(alpha)
86
+
87
+ length = h if (w < h) else w
88
+ d = length * math.cos(alpha)
89
+
90
+ gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
91
+ delta = math.pi - alpha - gamma
92
+ a = d * math.sin(alpha) / math.sin(delta)
93
+
94
+ y = a * math.cos(gamma)
95
+ x = y * math.tan(gamma)
96
+
97
+ return bb_w - 2 * x, bb_h - 2 * y
98
+
99
+ def __crop_around_center(self, image: np.ndarray, width: float, height: float) -> np.ndarray:
100
+ """ Given a NumPy / OpenCV 2 image, crops it to the given width and height around it's centre point """
101
+
102
+ image_size = (image.shape[1], image.shape[0])
103
+ image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))
104
+
105
+ width = image_size[0] if width > image_size[0] else width
106
+ height = image_size[1] if height > image_size[1] else height
107
+
108
+ x1, x2 = int(image_center[0] - width * 0.5), int(image_center[0] + width * 0.5)
109
+ y1, y2 = int(image_center[1] - height * 0.5), int(image_center[1] + height * 0.5)
110
+
111
+ return cv2.resize(image[y1:y2, x1:x2], self.__train_size)
112
+
113
+ def __rotate_and_crop(self, image: np.ndarray, angle: float) -> np.ndarray:
114
+ width, height = image.shape[:2]
115
+ target_width, target_height = self.__largest_rotated_rect(width, height, math.radians(angle))
116
+ return self.__crop_around_center(self.__rotate_image(image, angle), target_width, target_height)
117
+
118
+ @staticmethod
119
+ def __random_flip(img: np.ndarray) -> np.ndarray:
120
+ """ Perform random left/right flip with probability 0.5 """
121
+ if random.randint(0, 1):
122
+ img = img[:, ::-1]
123
+ return img.astype(np.float32)
124
+
125
+ def augment(self, img: np.ndarray, illumination: np.ndarray) -> tuple:
126
+ scale = math.exp(random.random() * math.log(self.__scale[1] / self.__scale[0])) * self.__scale[0]
127
+ s = min(max(int(round(min(img.shape[:2]) * scale)), 10), min(img.shape[:2]))
128
+
129
+ start_x = random.randrange(0, img.shape[0] - s + 1)
130
+ start_y = random.randrange(0, img.shape[1] - s + 1)
131
+ img = img[start_x:start_x + s, start_y:start_y + s]
132
+
133
+ img = self.__rotate_and_crop(img, angle=(random.random() - 0.5) * self.__angle)
134
+ img = self.__random_flip(img)
135
+
136
+ color_aug = np.zeros(shape=(3, 3))
137
+ for i in range(3):
138
+ color_aug[i, i] = 1 + random.random() * self.__color - 0.5 * self.__color
139
+ img *= np.array([[[color_aug[0][0], color_aug[1][1], color_aug[2][2]]]], dtype=np.float32)
140
+ new_image = np.clip(img, 0, 65535)
141
+
142
+ new_illuminant = np.zeros_like(illumination)
143
+ illumination = rgb_to_bgr(illumination)
144
+ for i in range(3):
145
+ for j in range(3):
146
+ new_illuminant[i] += illumination[j] * color_aug[i, j]
147
+ new_illuminant = rgb_to_bgr(np.clip(new_illuminant, 0.01, 100))
148
+
149
+ return new_image, new_illuminant
150
+
151
+ def crop(self, img: np.ndarray, scale: float = 0.5) -> np.ndarray:
152
+ return cv2.resize(img, self.__test_size, fx=scale, fy=scale)
MiAlgo/classes/data/__pycache__/ColorCheckerDataset.cpython-36.pyc ADDED
Binary file (2.34 kB). View file
 
MiAlgo/classes/data/__pycache__/ColorCheckerDataset.cpython-37.pyc ADDED
Binary file (2.31 kB). View file
 
MiAlgo/classes/data/__pycache__/ColorCheckerDataset.cpython-38.pyc ADDED
Binary file (2.36 kB). View file
 
MiAlgo/classes/data/__pycache__/DataAugmenter.cpython-36.pyc ADDED
Binary file (6.39 kB). View file
 
MiAlgo/classes/data/__pycache__/DataAugmenter.cpython-37.pyc ADDED
Binary file (6.36 kB). View file
 
MiAlgo/classes/data/__pycache__/DataAugmenter.cpython-38.pyc ADDED
Binary file (6.41 kB). View file
 
MiAlgo/classes/fc4/FC4.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union
2
+
3
+ import torch
4
+ from torch import nn, Tensor
5
+ from torch.nn.functional import normalize
6
+
7
+ from auxiliary.settings import USE_CONFIDENCE_WEIGHTED_POOLING
8
+ from classes.fc4.squeezenet.SqueezeNetLoader import SqueezeNetLoader
9
+
10
+ """
11
+ FC4: Fully Convolutional Color Constancy with Confidence-weighted Pooling
12
+ * Original code: https://github.com/yuanming-hu/fc4
13
+ * Paper: https://www.microsoft.com/en-us/research/publication/fully-convolutional-color-constancy-confidence-weighted-pooling/
14
+ """
15
+
16
+
17
+ class FC4(torch.nn.Module):
18
+
19
+ def __init__(self, squeezenet_version: float = 1.1):
20
+ super().__init__()
21
+
22
+ # SqueezeNet backbone (conv1-fire8) for extracting semantic features
23
+ squeezenet = SqueezeNetLoader(squeezenet_version).load(pretrained=True)
24
+ self.backbone = nn.Sequential(*list(squeezenet.children())[0][:12])
25
+
26
+ # Final convolutional layers (conv6 and conv7) to extract semi-dense feature maps
27
+ self.final_convs = nn.Sequential(
28
+ nn.MaxPool2d(kernel_size=2, stride=1, ceil_mode=True),
29
+ nn.Conv2d(512, 64, kernel_size=6, stride=1, padding=3),
30
+ nn.ReLU(inplace=True),
31
+ nn.Dropout(p=0.5),
32
+ nn.Conv2d(64, 4 if USE_CONFIDENCE_WEIGHTED_POOLING else 3, kernel_size=1, stride=1),
33
+ nn.ReLU(inplace=True)
34
+ )
35
+
36
+ def forward(self, x: Tensor) -> Union[tuple, Tensor]:
37
+ """
38
+ Estimate an RGB colour for the illuminant of the input image
39
+ @param x: the image for which the colour of the illuminant has to be estimated
40
+ @return: the colour estimate as a Tensor. If confidence-weighted pooling is used, the per-path colour estimates
41
+ and the confidence weights are returned as well (used for visualizations)
42
+ """
43
+
44
+ x = self.backbone(x)
45
+ out = self.final_convs(x)
46
+
47
+ # Confidence-weighted pooling: "out" is a set of semi-dense feature maps
48
+ if USE_CONFIDENCE_WEIGHTED_POOLING:
49
+ # Per-patch color estimates (first 3 dimensions)
50
+ rgb = normalize(out[:, :3, :, :], dim=1)
51
+
52
+ # Confidence (last dimension)
53
+ confidence = out[:, 3:4, :, :]
54
+
55
+ # Confidence-weighted pooling
56
+ pred = normalize(torch.sum(torch.sum(rgb * confidence, 2), 2), dim=1)
57
+
58
+ return pred, rgb, confidence
59
+
60
+ # Summation pooling
61
+ pred = normalize(torch.sum(torch.sum(out, 2), 2), dim=1)
62
+
63
+ return pred
MiAlgo/classes/fc4/ModelFC4.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Union, Tuple
3
+
4
+ import torchvision.transforms.functional as F
5
+ from torch import Tensor
6
+ from torchvision.transforms import transforms
7
+
8
+ from auxiliary.settings import USE_CONFIDENCE_WEIGHTED_POOLING
9
+ from auxiliary.utils import correct, rescale, scale
10
+ from classes.core.Model import Model
11
+ from classes.fc4.FC4 import FC4
12
+
13
+
14
+ class ModelFC4(Model):
15
+
16
+ def __init__(self):
17
+ super().__init__()
18
+ self._network = FC4().to(self._device)
19
+
20
+ def predict(self, img: Tensor, return_steps: bool = False) -> Union[Tensor, Tuple]:
21
+ """
22
+ Performs inference on the input image using the FC4 method.
23
+ @param img: the image for which an illuminant colour has to be estimated
24
+ @param return_steps: whether or not to also return the per-patch estimates and confidence weights. When this
25
+ flag is set to True, confidence-weighted pooling must be active)
26
+ @return: the colour estimate as a Tensor. If "return_steps" is set to true, the per-path colour estimates and
27
+ the confidence weights are also returned (used for visualizations)
28
+ """
29
+ if USE_CONFIDENCE_WEIGHTED_POOLING:
30
+ pred, rgb, confidence = self._network(img)
31
+ if return_steps:
32
+ return pred, rgb, confidence
33
+ return pred
34
+ return self._network(img)
35
+
36
+ def optimize(self, img: Tensor, label: Tensor) -> float:
37
+ self._optimizer.zero_grad()
38
+ pred = self.predict(img)
39
+ loss = self.get_loss(pred, label)
40
+ loss.backward()
41
+ self._optimizer.step()
42
+ return loss.item()
43
+
44
+
MiAlgo/classes/fc4/__pycache__/FC4.cpython-36.pyc ADDED
Binary file (2.05 kB). View file