Phi2-Fine-Tuning / testing_merged_model.py
cranky-coder08's picture
Add files using upload-large-folder tool
b48a35b verified
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import traceback
MERGED_MODEL_PATH = "./merged_tinyllama_logger"
SAMPLE_LOG = """2023-03-06 15:38:41 ERROR [Worker-11] org.hibernate.exception.ConstraintViolationException at at com.example.CacheManager.land(CacheManager.java:359) at at com.example.ShippingService.discover(CacheManager.java:436) at at com.example.HttpClient.work(DatabaseConnector.java:494) at at com.example.ShippingService.window(OrderModule.java:378) at at com.example.CacheManager.almost(DatabaseConnector.java:326) at at com.example.DatabaseConnector.couple(AuthModule.java:13) at at com.example.PaymentModule.wrong(HttpClient.java:244)."""
try:
model = AutoModelForCausalLM.from_pretrained(
MERGED_MODEL_PATH,
low_cpu_mem_usage= True,
return_dict = True,
torch_dtype = torch.float16,
device_map = "auto"
)
print("AutoModelForCausalLM loaded successfully.")
print("Loading AutoTokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MERGED_MODEL_PATH)
print("AutoTokenizer loaded successfully.")
except Exception as e:
print("ERROR LOADING MODEL OR TOKENIZER...CHECK PATH")
traceback.print_exc()
if tokenizer is None:
print("error loading tokenizer")
exit(1)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
prompt = SAMPLE_LOG + "\n"
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=True).to(model.device)
with torch.no_grad():
output_tokens = model.generate(
**inputs,
max_new_tokens=60,
temperature=0.3,
do_sample=True,
top_p=0.9,
top_k=30,
eos_token_id = tokenizer.eos_token_id,
pad_token_id = tokenizer.pad_token_id,
num_return_sequences = 1
)
generated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
print(f"Generated Text: {generated_text}")
print("END OF GENERATED TEXT")
#summary_start_index = generated_text.find(SAMPLE_LOG + "\n")
# prompt_end_index = generated_text.rfind(
summary_start_index = len(SAMPLE_LOG) + 1
summary = ""
if "PM" in generated_text:
summary_end_index = generated_text.rfind("PM") + len("PM")
elif "AM" in generated_text:
summary_end_index = generated_text.rfind("AM") + len("AM")
if summary_end_index != -1 and summary_end_index > summary_start_index:
summary = generated_text[len(SAMPLE_LOG)+1:summary_end_index].strip()
else:
prompt_end_index = generated_text.find(SAMPLE_LOG + "\n")
if prompt_end_index != -1:
summary = generated_text[prompt_end_index + len(SAMPLE_LOG + "\n"):].strip()
else:
summary = generated_text.strip()
print(summary)