| from concurrent.futures import Future | |
| from typing import Any, Optional | |
| import torch.distributed as dist | |
| import torch.distributed.checkpoint.state_dict_loader as loader | |
| import torch.distributed.checkpoint.state_dict_saver as saver | |
| from torch.distributed.checkpoint.metadata import Metadata, STATE_DICT_TYPE | |
| from torch.distributed.checkpoint.storage import ( | |
| LoadPlanner, | |
| SavePlanner, | |
| StorageReader, | |
| StorageWriter, | |
| ) | |
| __all__: list[str] = [] | |
| class _Checkpointer: | |
| """This base class specefies a high level API for saving and loading | |
| distributed `state_dict` 's. It provides an abstraction over the low-level APIs | |
| provided by :py:mod:`torch.distributed.checkpoint.storage`, essentially calling | |
| :py:meth: `torch.distributed.state_dict_saver.save` and | |
| :py:meth: `torch.distributed.state_dict_loader.load` with the provided storage | |
| readers and writers. | |
| .. warning:: | |
| This feature is experimental and subject to removal/change. | |
| """ | |
| def __init__( | |
| self, | |
| storage_writer: StorageWriter, | |
| storage_reader: StorageReader, | |
| *, | |
| process_group: Optional[dist.ProcessGroup] = None, | |
| coordinator_rank: int = 0, | |
| no_dist: bool = False, | |
| load_planner: Optional[LoadPlanner] = None, | |
| save_planner: Optional[SavePlanner] = None, | |
| ): | |
| """Initializes the Checkpointer instance. | |
| Args: | |
| storage_writer: Instance of StorageWrite use to perform writes. | |
| storage_reader: StorageReader used to load data from. | |
| process_group: ProcessGroup to be used for cross-rank synchronization. | |
| coordinator_rank: Rank to use to coordinate the checkpoint. rank0 is used by default. | |
| no_dist: If ``True``, distributed checkpoint will not load in SPMD style. (Default: ``False``) | |
| loader_planner: Instance of LoadPlanner to use when loading. | |
| save_planner: Instance of SavePlanner to use when saving. | |
| """ | |
| self.storage_writer = storage_writer | |
| self.storage_reader = storage_reader | |
| self.process_group = process_group | |
| self.coordinator_rank = coordinator_rank | |
| self.no_dist = no_dist | |
| self.load_planner = load_planner | |
| self.save_planner = save_planner | |
| def save( | |
| self, | |
| state_dict: STATE_DICT_TYPE, | |
| ) -> Metadata: | |
| """Calls :py:meth: `torch.distributed.state_dict_saver.save`. Utilizing values passed during initialization.""" | |
| return saver.save( | |
| state_dict, | |
| self.storage_writer, | |
| process_group=self.process_group, | |
| coordinator_rank=self.coordinator_rank, | |
| no_dist=self.no_dist, | |
| planner=self.save_planner, | |
| ) | |
| def async_save( | |
| self, | |
| state_dict: STATE_DICT_TYPE, | |
| ) -> Future: | |
| """ | |
| Calls :py:meth: `torch.distributed.state_dict_saver._async_save`. Utilizing values passed during initialization. | |
| Returns: | |
| Future: A future holding the resultant Metadata object from `save`. | |
| """ | |
| return saver.async_save( | |
| state_dict, | |
| storage_writer=self.storage_writer, | |
| process_group=self.process_group, | |
| planner=self.save_planner, | |
| ) | |
| def load(self, state_dict: dict[str, Any]) -> None: | |
| """Calls :py:meth: `torch.distributed.state_dict_loader.load`. Utilizing values passed during initialization.""" | |
| loader.load( | |
| state_dict, | |
| storage_reader=self.storage_reader, | |
| process_group=self.process_group, | |
| planner=self.load_planner, | |
| ) | |