| from sympy.core.relational import Eq | |
| from sympy.core.singleton import S | |
| from sympy.abc import x, y, z, s, t | |
| from sympy.sets import FiniteSet, EmptySet | |
| from sympy.geometry import Point | |
| from sympy.vector import ImplicitRegion | |
| from sympy.testing.pytest import raises | |
| def test_ImplicitRegion(): | |
| ellipse = ImplicitRegion((x, y), (x**2/4 + y**2/16 - 1)) | |
| assert ellipse.equation == x**2/4 + y**2/16 - 1 | |
| assert ellipse.variables == (x, y) | |
| assert ellipse.degree == 2 | |
| r = ImplicitRegion((x, y, z), Eq(x**4 + y**2 - x*y, 6)) | |
| assert r.equation == x**4 + y**2 - x*y - 6 | |
| assert r.variables == (x, y, z) | |
| assert r.degree == 4 | |
| def test_regular_point(): | |
| r1 = ImplicitRegion((x,), x**2 - 16) | |
| assert r1.regular_point() == (-4,) | |
| c1 = ImplicitRegion((x, y), x**2 + y**2 - 4) | |
| assert c1.regular_point() == (0, -2) | |
| c2 = ImplicitRegion((x, y), (x - S(5)/2)**2 + y**2 - (S(1)/4)**2) | |
| assert c2.regular_point() == (S(5)/2, -S(1)/4) | |
| c3 = ImplicitRegion((x, y), (y - 5)**2 - 16*(x - 5)) | |
| assert c3.regular_point() == (5, 5) | |
| r2 = ImplicitRegion((x, y), x**2 - 4*x*y - 3*y**2 + 4*x + 8*y - 5) | |
| assert r2.regular_point() == (S(4)/7, S(9)/7) | |
| r3 = ImplicitRegion((x, y), x**2 - 2*x*y + 3*y**2 - 2*x - 5*y + 3/2) | |
| raises(ValueError, lambda: r3.regular_point()) | |
| def test_singular_points_and_multiplicty(): | |
| r1 = ImplicitRegion((x, y, z), Eq(x + y + z, 0)) | |
| assert r1.singular_points() == EmptySet | |
| r2 = ImplicitRegion((x, y, z), x*y*z + y**4 -x**2*z**2) | |
| assert r2.singular_points() == FiniteSet((0, 0, z), (x, 0, 0)) | |
| assert r2.multiplicity((0, 0, 0)) == 3 | |
| assert r2.multiplicity((0, 0, 6)) == 2 | |
| r3 = ImplicitRegion((x, y, z), z**2 - x**2 - y**2) | |
| assert r3.singular_points() == FiniteSet((0, 0, 0)) | |
| assert r3.multiplicity((0, 0, 0)) == 2 | |
| r4 = ImplicitRegion((x, y), x**2 + y**2 - 2*x) | |
| assert r4.singular_points() == EmptySet | |
| assert r4.multiplicity(Point(1, 3)) == 0 | |
| def test_rational_parametrization(): | |
| p = ImplicitRegion((x,), x - 2) | |
| assert p.rational_parametrization() == (x - 2,) | |
| line = ImplicitRegion((x, y), Eq(y, 3*x + 2)) | |
| assert line.rational_parametrization() == (x, 3*x + 2) | |
| circle1 = ImplicitRegion((x, y), (x-2)**2 + (y+3)**2 - 4) | |
| assert circle1.rational_parametrization(parameters=t) == (4*t/(t**2 + 1) + 2, 4*t**2/(t**2 + 1) - 5) | |
| circle2 = ImplicitRegion((x, y), (x - S.Half)**2 + y**2 - (S(1)/2)**2) | |
| assert circle2.rational_parametrization(parameters=t) == (t/(t**2 + 1) + S(1)/2, t**2/(t**2 + 1) - S(1)/2) | |
| circle3 = ImplicitRegion((x, y), Eq(x**2 + y**2, 2*x)) | |
| assert circle3.rational_parametrization(parameters=(t,)) == (2*t/(t**2 + 1) + 1, 2*t**2/(t**2 + 1) - 1) | |
| parabola = ImplicitRegion((x, y), (y - 3)**2 - 4*(x + 6)) | |
| assert parabola.rational_parametrization(t) == (-6 + 4/t**2, 3 + 4/t) | |
| rect_hyperbola = ImplicitRegion((x, y), x*y - 1) | |
| assert rect_hyperbola.rational_parametrization(t) == (-1 + (t + 1)/t, t) | |
| cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2) | |
| assert cubic_curve.rational_parametrization(parameters=(t)) == (t**2 - 1, t*(t**2 - 1)) | |
| cuspidal = ImplicitRegion((x, y), (x**3 - y**2)) | |
| assert cuspidal.rational_parametrization(t) == (t**2, t**3) | |
| I = ImplicitRegion((x, y), x**3 + x**2 - y**2) | |
| assert I.rational_parametrization(t) == (t**2 - 1, t*(t**2 - 1)) | |
| sphere = ImplicitRegion((x, y, z), Eq(x**2 + y**2 + z**2, 2*x)) | |
| assert sphere.rational_parametrization(parameters=(s, t)) == (2/(s**2 + t**2 + 1), 2*t/(s**2 + t**2 + 1), 2*s/(s**2 + t**2 + 1)) | |
| conic = ImplicitRegion((x, y), Eq(x**2 + 4*x*y + 3*y**2 + x - y + 10, 0)) | |
| assert conic.rational_parametrization(t) == ( | |
| S(17)/2 + 4/(3*t**2 + 4*t + 1), 4*t/(3*t**2 + 4*t + 1) - S(11)/2) | |
| r1 = ImplicitRegion((x, y), y**2 - x**3 + x) | |
| raises(NotImplementedError, lambda: r1.rational_parametrization()) | |
| r2 = ImplicitRegion((x, y), y**2 - x**3 - x**2 + 1) | |
| raises(NotImplementedError, lambda: r2.rational_parametrization()) | |