|
|
from sympy.core.symbol import symbols |
|
|
from sympy.core.function import Function |
|
|
from sympy.matrices.dense import Matrix |
|
|
from sympy.matrices.dense import zeros |
|
|
from sympy.simplify.simplify import simplify |
|
|
from sympy.codegen.matrix_nodes import MatrixSolve |
|
|
from sympy.utilities.lambdify import lambdify |
|
|
from sympy.printing.numpy import NumPyPrinter |
|
|
from sympy.testing.pytest import skip |
|
|
from sympy.external import import_module |
|
|
|
|
|
|
|
|
def test_matrix_solve_issue_24862(): |
|
|
A = Matrix(3, 3, symbols('a:9')) |
|
|
b = Matrix(3, 1, symbols('b:3')) |
|
|
hash(MatrixSolve(A, b)) |
|
|
|
|
|
|
|
|
def test_matrix_solve_derivative_exact(): |
|
|
q = symbols('q') |
|
|
a11, a12, a21, a22, b1, b2 = ( |
|
|
f(q) for f in symbols('a11 a12 a21 a22 b1 b2', cls=Function)) |
|
|
A = Matrix([[a11, a12], [a21, a22]]) |
|
|
b = Matrix([b1, b2]) |
|
|
x_lu = A.LUsolve(b) |
|
|
dxdq_lu = A.LUsolve(b.diff(q) - A.diff(q) * A.LUsolve(b)) |
|
|
assert simplify(x_lu.diff(q) - dxdq_lu) == zeros(2, 1) |
|
|
|
|
|
dxdq_ms = MatrixSolve(A, b.diff(q) - A.diff(q) * MatrixSolve(A, b)) |
|
|
assert MatrixSolve(A, b).diff(q) == dxdq_ms |
|
|
|
|
|
|
|
|
def test_matrix_solve_derivative_numpy(): |
|
|
np = import_module('numpy') |
|
|
if not np: |
|
|
skip("numpy not installed.") |
|
|
q = symbols('q') |
|
|
a11, a12, a21, a22, b1, b2 = ( |
|
|
f(q) for f in symbols('a11 a12 a21 a22 b1 b2', cls=Function)) |
|
|
A = Matrix([[a11, a12], [a21, a22]]) |
|
|
b = Matrix([b1, b2]) |
|
|
dx_lu = A.LUsolve(b).diff(q) |
|
|
subs = {a11.diff(q): 0.2, a12.diff(q): 0.3, a21.diff(q): 0.1, |
|
|
a22.diff(q): 0.5, b1.diff(q): 0.4, b2.diff(q): 0.9, |
|
|
a11: 1.3, a12: 0.5, a21: 1.2, a22: 4, b1: 6.2, b2: 3.5} |
|
|
p, p_vals = zip(*subs.items()) |
|
|
dx_sm = MatrixSolve(A, b).diff(q) |
|
|
np.testing.assert_allclose( |
|
|
lambdify(p, dx_sm, printer=NumPyPrinter)(*p_vals), |
|
|
lambdify(p, dx_lu, printer=NumPyPrinter)(*p_vals)) |
|
|
|