|
|
import random |
|
|
|
|
|
import pytest |
|
|
|
|
|
import networkx as nx |
|
|
from networkx.utils import edges_equal, nodes_equal |
|
|
|
|
|
|
|
|
class TestFunction: |
|
|
def setup_method(self): |
|
|
self.G = nx.Graph({0: [1, 2, 3], 1: [1, 2, 0], 4: []}, name="Test") |
|
|
self.Gdegree = {0: 3, 1: 2, 2: 2, 3: 1, 4: 0} |
|
|
self.Gnodes = list(range(5)) |
|
|
self.Gedges = [(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)] |
|
|
self.DG = nx.DiGraph({0: [1, 2, 3], 1: [1, 2, 0], 4: []}) |
|
|
self.DGin_degree = {0: 1, 1: 2, 2: 2, 3: 1, 4: 0} |
|
|
self.DGout_degree = {0: 3, 1: 3, 2: 0, 3: 0, 4: 0} |
|
|
self.DGnodes = list(range(5)) |
|
|
self.DGedges = [(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)] |
|
|
|
|
|
def test_nodes(self): |
|
|
assert nodes_equal(self.G.nodes(), list(nx.nodes(self.G))) |
|
|
assert nodes_equal(self.DG.nodes(), list(nx.nodes(self.DG))) |
|
|
|
|
|
def test_edges(self): |
|
|
assert edges_equal(self.G.edges(), list(nx.edges(self.G))) |
|
|
assert sorted(self.DG.edges()) == sorted(nx.edges(self.DG)) |
|
|
assert edges_equal( |
|
|
self.G.edges(nbunch=[0, 1, 3]), list(nx.edges(self.G, nbunch=[0, 1, 3])) |
|
|
) |
|
|
assert sorted(self.DG.edges(nbunch=[0, 1, 3])) == sorted( |
|
|
nx.edges(self.DG, nbunch=[0, 1, 3]) |
|
|
) |
|
|
|
|
|
def test_degree(self): |
|
|
assert edges_equal(self.G.degree(), list(nx.degree(self.G))) |
|
|
assert sorted(self.DG.degree()) == sorted(nx.degree(self.DG)) |
|
|
assert edges_equal( |
|
|
self.G.degree(nbunch=[0, 1]), list(nx.degree(self.G, nbunch=[0, 1])) |
|
|
) |
|
|
assert sorted(self.DG.degree(nbunch=[0, 1])) == sorted( |
|
|
nx.degree(self.DG, nbunch=[0, 1]) |
|
|
) |
|
|
assert edges_equal( |
|
|
self.G.degree(weight="weight"), list(nx.degree(self.G, weight="weight")) |
|
|
) |
|
|
assert sorted(self.DG.degree(weight="weight")) == sorted( |
|
|
nx.degree(self.DG, weight="weight") |
|
|
) |
|
|
|
|
|
def test_neighbors(self): |
|
|
assert list(self.G.neighbors(1)) == list(nx.neighbors(self.G, 1)) |
|
|
assert list(self.DG.neighbors(1)) == list(nx.neighbors(self.DG, 1)) |
|
|
|
|
|
def test_number_of_nodes(self): |
|
|
assert self.G.number_of_nodes() == nx.number_of_nodes(self.G) |
|
|
assert self.DG.number_of_nodes() == nx.number_of_nodes(self.DG) |
|
|
|
|
|
def test_number_of_edges(self): |
|
|
assert self.G.number_of_edges() == nx.number_of_edges(self.G) |
|
|
assert self.DG.number_of_edges() == nx.number_of_edges(self.DG) |
|
|
|
|
|
def test_is_directed(self): |
|
|
assert self.G.is_directed() == nx.is_directed(self.G) |
|
|
assert self.DG.is_directed() == nx.is_directed(self.DG) |
|
|
|
|
|
def test_add_star(self): |
|
|
G = self.G.copy() |
|
|
nlist = [12, 13, 14, 15] |
|
|
nx.add_star(G, nlist) |
|
|
assert edges_equal(G.edges(nlist), [(12, 13), (12, 14), (12, 15)]) |
|
|
|
|
|
G = self.G.copy() |
|
|
nx.add_star(G, nlist, weight=2.0) |
|
|
assert edges_equal( |
|
|
G.edges(nlist, data=True), |
|
|
[ |
|
|
(12, 13, {"weight": 2.0}), |
|
|
(12, 14, {"weight": 2.0}), |
|
|
(12, 15, {"weight": 2.0}), |
|
|
], |
|
|
) |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = [12] |
|
|
nx.add_star(G, nlist) |
|
|
assert nodes_equal(G, list(self.G) + nlist) |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = [] |
|
|
nx.add_star(G, nlist) |
|
|
assert nodes_equal(G.nodes, self.Gnodes) |
|
|
assert edges_equal(G.edges, self.G.edges) |
|
|
|
|
|
def test_add_path(self): |
|
|
G = self.G.copy() |
|
|
nlist = [12, 13, 14, 15] |
|
|
nx.add_path(G, nlist) |
|
|
assert edges_equal(G.edges(nlist), [(12, 13), (13, 14), (14, 15)]) |
|
|
G = self.G.copy() |
|
|
nx.add_path(G, nlist, weight=2.0) |
|
|
assert edges_equal( |
|
|
G.edges(nlist, data=True), |
|
|
[ |
|
|
(12, 13, {"weight": 2.0}), |
|
|
(13, 14, {"weight": 2.0}), |
|
|
(14, 15, {"weight": 2.0}), |
|
|
], |
|
|
) |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = ["node"] |
|
|
nx.add_path(G, nlist) |
|
|
assert edges_equal(G.edges(nlist), []) |
|
|
assert nodes_equal(G, list(self.G) + ["node"]) |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = iter(["node"]) |
|
|
nx.add_path(G, nlist) |
|
|
assert edges_equal(G.edges(["node"]), []) |
|
|
assert nodes_equal(G, list(self.G) + ["node"]) |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = [12] |
|
|
nx.add_path(G, nlist) |
|
|
assert edges_equal(G.edges(nlist), []) |
|
|
assert nodes_equal(G, list(self.G) + [12]) |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = iter([12]) |
|
|
nx.add_path(G, nlist) |
|
|
assert edges_equal(G.edges([12]), []) |
|
|
assert nodes_equal(G, list(self.G) + [12]) |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = [] |
|
|
nx.add_path(G, nlist) |
|
|
assert edges_equal(G.edges, self.G.edges) |
|
|
assert nodes_equal(G, list(self.G)) |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = iter([]) |
|
|
nx.add_path(G, nlist) |
|
|
assert edges_equal(G.edges, self.G.edges) |
|
|
assert nodes_equal(G, list(self.G)) |
|
|
|
|
|
def test_add_cycle(self): |
|
|
G = self.G.copy() |
|
|
nlist = [12, 13, 14, 15] |
|
|
oklists = [ |
|
|
[(12, 13), (12, 15), (13, 14), (14, 15)], |
|
|
[(12, 13), (13, 14), (14, 15), (15, 12)], |
|
|
] |
|
|
nx.add_cycle(G, nlist) |
|
|
assert sorted(G.edges(nlist)) in oklists |
|
|
G = self.G.copy() |
|
|
oklists = [ |
|
|
[ |
|
|
(12, 13, {"weight": 1.0}), |
|
|
(12, 15, {"weight": 1.0}), |
|
|
(13, 14, {"weight": 1.0}), |
|
|
(14, 15, {"weight": 1.0}), |
|
|
], |
|
|
[ |
|
|
(12, 13, {"weight": 1.0}), |
|
|
(13, 14, {"weight": 1.0}), |
|
|
(14, 15, {"weight": 1.0}), |
|
|
(15, 12, {"weight": 1.0}), |
|
|
], |
|
|
] |
|
|
nx.add_cycle(G, nlist, weight=1.0) |
|
|
assert sorted(G.edges(nlist, data=True)) in oklists |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = [12] |
|
|
nx.add_cycle(G, nlist) |
|
|
assert nodes_equal(G, list(self.G) + nlist) |
|
|
|
|
|
G = self.G.copy() |
|
|
nlist = [] |
|
|
nx.add_cycle(G, nlist) |
|
|
assert nodes_equal(G.nodes, self.Gnodes) |
|
|
assert edges_equal(G.edges, self.G.edges) |
|
|
|
|
|
def test_subgraph(self): |
|
|
assert ( |
|
|
self.G.subgraph([0, 1, 2, 4]).adj == nx.subgraph(self.G, [0, 1, 2, 4]).adj |
|
|
) |
|
|
assert ( |
|
|
self.DG.subgraph([0, 1, 2, 4]).adj == nx.subgraph(self.DG, [0, 1, 2, 4]).adj |
|
|
) |
|
|
assert ( |
|
|
self.G.subgraph([0, 1, 2, 4]).adj |
|
|
== nx.induced_subgraph(self.G, [0, 1, 2, 4]).adj |
|
|
) |
|
|
assert ( |
|
|
self.DG.subgraph([0, 1, 2, 4]).adj |
|
|
== nx.induced_subgraph(self.DG, [0, 1, 2, 4]).adj |
|
|
) |
|
|
|
|
|
H = nx.induced_subgraph(self.G.subgraph([0, 1, 2, 4]), [0, 1, 4]) |
|
|
assert H._graph is not self.G |
|
|
assert H.adj == self.G.subgraph([0, 1, 4]).adj |
|
|
|
|
|
def test_edge_subgraph(self): |
|
|
assert ( |
|
|
self.G.edge_subgraph([(1, 2), (0, 3)]).adj |
|
|
== nx.edge_subgraph(self.G, [(1, 2), (0, 3)]).adj |
|
|
) |
|
|
assert ( |
|
|
self.DG.edge_subgraph([(1, 2), (0, 3)]).adj |
|
|
== nx.edge_subgraph(self.DG, [(1, 2), (0, 3)]).adj |
|
|
) |
|
|
|
|
|
def test_create_empty_copy(self): |
|
|
G = nx.create_empty_copy(self.G, with_data=False) |
|
|
assert nodes_equal(G, list(self.G)) |
|
|
assert G.graph == {} |
|
|
assert G._node == {}.fromkeys(self.G.nodes(), {}) |
|
|
assert G._adj == {}.fromkeys(self.G.nodes(), {}) |
|
|
G = nx.create_empty_copy(self.G) |
|
|
assert nodes_equal(G, list(self.G)) |
|
|
assert G.graph == self.G.graph |
|
|
assert G._node == self.G._node |
|
|
assert G._adj == {}.fromkeys(self.G.nodes(), {}) |
|
|
|
|
|
def test_degree_histogram(self): |
|
|
assert nx.degree_histogram(self.G) == [1, 1, 1, 1, 1] |
|
|
|
|
|
def test_density(self): |
|
|
assert nx.density(self.G) == 0.5 |
|
|
assert nx.density(self.DG) == 0.3 |
|
|
G = nx.Graph() |
|
|
G.add_node(1) |
|
|
assert nx.density(G) == 0.0 |
|
|
|
|
|
def test_density_selfloop(self): |
|
|
G = nx.Graph() |
|
|
G.add_edge(1, 1) |
|
|
assert nx.density(G) == 0.0 |
|
|
G.add_edge(1, 2) |
|
|
assert nx.density(G) == 2.0 |
|
|
|
|
|
def test_freeze(self): |
|
|
G = nx.freeze(self.G) |
|
|
assert G.frozen |
|
|
pytest.raises(nx.NetworkXError, G.add_node, 1) |
|
|
pytest.raises(nx.NetworkXError, G.add_nodes_from, [1]) |
|
|
pytest.raises(nx.NetworkXError, G.remove_node, 1) |
|
|
pytest.raises(nx.NetworkXError, G.remove_nodes_from, [1]) |
|
|
pytest.raises(nx.NetworkXError, G.add_edge, 1, 2) |
|
|
pytest.raises(nx.NetworkXError, G.add_edges_from, [(1, 2)]) |
|
|
pytest.raises(nx.NetworkXError, G.remove_edge, 1, 2) |
|
|
pytest.raises(nx.NetworkXError, G.remove_edges_from, [(1, 2)]) |
|
|
pytest.raises(nx.NetworkXError, G.clear_edges) |
|
|
pytest.raises(nx.NetworkXError, G.clear) |
|
|
|
|
|
def test_is_frozen(self): |
|
|
assert not nx.is_frozen(self.G) |
|
|
G = nx.freeze(self.G) |
|
|
assert G.frozen == nx.is_frozen(self.G) |
|
|
assert G.frozen |
|
|
|
|
|
def test_node_attributes_are_still_mutable_on_frozen_graph(self): |
|
|
G = nx.freeze(nx.path_graph(3)) |
|
|
node = G.nodes[0] |
|
|
node["node_attribute"] = True |
|
|
assert node["node_attribute"] == True |
|
|
|
|
|
def test_edge_attributes_are_still_mutable_on_frozen_graph(self): |
|
|
G = nx.freeze(nx.path_graph(3)) |
|
|
edge = G.edges[(0, 1)] |
|
|
edge["edge_attribute"] = True |
|
|
assert edge["edge_attribute"] == True |
|
|
|
|
|
def test_neighbors_complete_graph(self): |
|
|
graph = nx.complete_graph(100) |
|
|
pop = random.sample(list(graph), 1) |
|
|
nbors = list(nx.neighbors(graph, pop[0])) |
|
|
|
|
|
assert len(nbors) == len(graph) - 1 |
|
|
|
|
|
graph = nx.path_graph(100) |
|
|
node = random.sample(list(graph), 1)[0] |
|
|
nbors = list(nx.neighbors(graph, node)) |
|
|
|
|
|
if node != 0 and node != 99: |
|
|
assert len(nbors) == 2 |
|
|
else: |
|
|
assert len(nbors) == 1 |
|
|
|
|
|
|
|
|
graph = nx.star_graph(99) |
|
|
nbors = list(nx.neighbors(graph, 0)) |
|
|
assert len(nbors) == 99 |
|
|
|
|
|
def test_non_neighbors(self): |
|
|
graph = nx.complete_graph(100) |
|
|
pop = random.sample(list(graph), 1) |
|
|
nbors = list(nx.non_neighbors(graph, pop[0])) |
|
|
|
|
|
assert len(nbors) == 0 |
|
|
|
|
|
graph = nx.path_graph(100) |
|
|
node = random.sample(list(graph), 1)[0] |
|
|
nbors = list(nx.non_neighbors(graph, node)) |
|
|
|
|
|
if node != 0 and node != 99: |
|
|
assert len(nbors) == 97 |
|
|
else: |
|
|
assert len(nbors) == 98 |
|
|
|
|
|
|
|
|
graph = nx.star_graph(99) |
|
|
nbors = list(nx.non_neighbors(graph, 0)) |
|
|
assert len(nbors) == 0 |
|
|
|
|
|
|
|
|
graph = nx.Graph() |
|
|
graph.add_nodes_from(range(10)) |
|
|
nbors = list(nx.non_neighbors(graph, 0)) |
|
|
assert len(nbors) == 9 |
|
|
|
|
|
def test_non_edges(self): |
|
|
|
|
|
graph = nx.complete_graph(5) |
|
|
nedges = list(nx.non_edges(graph)) |
|
|
assert len(nedges) == 0 |
|
|
|
|
|
graph = nx.path_graph(4) |
|
|
expected = [(0, 2), (0, 3), (1, 3)] |
|
|
nedges = list(nx.non_edges(graph)) |
|
|
for u, v in expected: |
|
|
assert (u, v) in nedges or (v, u) in nedges |
|
|
|
|
|
graph = nx.star_graph(4) |
|
|
expected = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] |
|
|
nedges = list(nx.non_edges(graph)) |
|
|
for u, v in expected: |
|
|
assert (u, v) in nedges or (v, u) in nedges |
|
|
|
|
|
|
|
|
graph = nx.DiGraph() |
|
|
graph.add_edges_from([(0, 2), (2, 0), (2, 1)]) |
|
|
expected = [(0, 1), (1, 0), (1, 2)] |
|
|
nedges = list(nx.non_edges(graph)) |
|
|
for e in expected: |
|
|
assert e in nedges |
|
|
|
|
|
def test_is_weighted(self): |
|
|
G = nx.Graph() |
|
|
assert not nx.is_weighted(G) |
|
|
|
|
|
G = nx.path_graph(4) |
|
|
assert not nx.is_weighted(G) |
|
|
assert not nx.is_weighted(G, (2, 3)) |
|
|
|
|
|
G.add_node(4) |
|
|
G.add_edge(3, 4, weight=4) |
|
|
assert not nx.is_weighted(G) |
|
|
assert nx.is_weighted(G, (3, 4)) |
|
|
|
|
|
G = nx.DiGraph() |
|
|
G.add_weighted_edges_from( |
|
|
[ |
|
|
("0", "3", 3), |
|
|
("0", "1", -5), |
|
|
("1", "0", -5), |
|
|
("0", "2", 2), |
|
|
("1", "2", 4), |
|
|
("2", "3", 1), |
|
|
] |
|
|
) |
|
|
assert nx.is_weighted(G) |
|
|
assert nx.is_weighted(G, ("1", "0")) |
|
|
|
|
|
G = G.to_undirected() |
|
|
assert nx.is_weighted(G) |
|
|
assert nx.is_weighted(G, ("1", "0")) |
|
|
|
|
|
pytest.raises(nx.NetworkXError, nx.is_weighted, G, (1, 2)) |
|
|
|
|
|
def test_is_negatively_weighted(self): |
|
|
G = nx.Graph() |
|
|
assert not nx.is_negatively_weighted(G) |
|
|
|
|
|
G.add_node(1) |
|
|
G.add_nodes_from([2, 3, 4, 5]) |
|
|
assert not nx.is_negatively_weighted(G) |
|
|
|
|
|
G.add_edge(1, 2, weight=4) |
|
|
assert not nx.is_negatively_weighted(G, (1, 2)) |
|
|
|
|
|
G.add_edges_from([(1, 3), (2, 4), (2, 6)]) |
|
|
G[1][3]["color"] = "blue" |
|
|
assert not nx.is_negatively_weighted(G) |
|
|
assert not nx.is_negatively_weighted(G, (1, 3)) |
|
|
|
|
|
G[2][4]["weight"] = -2 |
|
|
assert nx.is_negatively_weighted(G, (2, 4)) |
|
|
assert nx.is_negatively_weighted(G) |
|
|
|
|
|
G = nx.DiGraph() |
|
|
G.add_weighted_edges_from( |
|
|
[ |
|
|
("0", "3", 3), |
|
|
("0", "1", -5), |
|
|
("1", "0", -2), |
|
|
("0", "2", 2), |
|
|
("1", "2", -3), |
|
|
("2", "3", 1), |
|
|
] |
|
|
) |
|
|
assert nx.is_negatively_weighted(G) |
|
|
assert not nx.is_negatively_weighted(G, ("0", "3")) |
|
|
assert nx.is_negatively_weighted(G, ("1", "0")) |
|
|
|
|
|
pytest.raises(nx.NetworkXError, nx.is_negatively_weighted, G, (1, 4)) |
|
|
|
|
|
|
|
|
class TestCommonNeighbors: |
|
|
@classmethod |
|
|
def setup_class(cls): |
|
|
cls.func = staticmethod(nx.common_neighbors) |
|
|
|
|
|
def test_func(G, u, v, expected): |
|
|
result = sorted(cls.func(G, u, v)) |
|
|
assert result == expected |
|
|
|
|
|
cls.test = staticmethod(test_func) |
|
|
|
|
|
def test_K5(self): |
|
|
G = nx.complete_graph(5) |
|
|
self.test(G, 0, 1, [2, 3, 4]) |
|
|
|
|
|
def test_P3(self): |
|
|
G = nx.path_graph(3) |
|
|
self.test(G, 0, 2, [1]) |
|
|
|
|
|
def test_S4(self): |
|
|
G = nx.star_graph(4) |
|
|
self.test(G, 1, 2, [0]) |
|
|
|
|
|
def test_digraph(self): |
|
|
with pytest.raises(nx.NetworkXNotImplemented): |
|
|
G = nx.DiGraph() |
|
|
G.add_edges_from([(0, 1), (1, 2)]) |
|
|
self.func(G, 0, 2) |
|
|
|
|
|
def test_nonexistent_nodes(self): |
|
|
G = nx.complete_graph(5) |
|
|
pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 5, 4) |
|
|
pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 4, 5) |
|
|
pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 5, 6) |
|
|
|
|
|
def test_custom1(self): |
|
|
"""Case of no common neighbors.""" |
|
|
G = nx.Graph() |
|
|
G.add_nodes_from([0, 1]) |
|
|
self.test(G, 0, 1, []) |
|
|
|
|
|
def test_custom2(self): |
|
|
"""Case of equal nodes.""" |
|
|
G = nx.complete_graph(4) |
|
|
self.test(G, 0, 0, [1, 2, 3]) |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
|
"graph_type", (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph) |
|
|
) |
|
|
def test_set_node_attributes(graph_type): |
|
|
|
|
|
G = nx.path_graph(3, create_using=graph_type) |
|
|
vals = 100 |
|
|
attr = "hello" |
|
|
nx.set_node_attributes(G, vals, attr) |
|
|
assert G.nodes[0][attr] == vals |
|
|
assert G.nodes[1][attr] == vals |
|
|
assert G.nodes[2][attr] == vals |
|
|
|
|
|
|
|
|
G = nx.path_graph(3, create_using=graph_type) |
|
|
vals = dict(zip(sorted(G.nodes()), range(len(G)))) |
|
|
attr = "hi" |
|
|
nx.set_node_attributes(G, vals, attr) |
|
|
assert G.nodes[0][attr] == 0 |
|
|
assert G.nodes[1][attr] == 1 |
|
|
assert G.nodes[2][attr] == 2 |
|
|
|
|
|
|
|
|
G = nx.path_graph(3, create_using=graph_type) |
|
|
d = {"hi": 0, "hello": 200} |
|
|
vals = dict.fromkeys(G.nodes(), d) |
|
|
vals.pop(0) |
|
|
nx.set_node_attributes(G, vals) |
|
|
assert G.nodes[0] == {} |
|
|
assert G.nodes[1]["hi"] == 0 |
|
|
assert G.nodes[2]["hello"] == 200 |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
|
("values", "name"), |
|
|
( |
|
|
({0: "red", 1: "blue"}, "color"), |
|
|
({0: {"color": "red"}, 1: {"color": "blue"}}, None), |
|
|
), |
|
|
) |
|
|
def test_set_node_attributes_ignores_extra_nodes(values, name): |
|
|
""" |
|
|
When `values` is a dict or dict-of-dict keyed by nodes, ensure that keys |
|
|
that correspond to nodes not in G are ignored. |
|
|
""" |
|
|
G = nx.Graph() |
|
|
G.add_node(0) |
|
|
nx.set_node_attributes(G, values, name) |
|
|
assert G.nodes[0]["color"] == "red" |
|
|
assert 1 not in G.nodes |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph)) |
|
|
def test_set_edge_attributes(graph_type): |
|
|
|
|
|
G = nx.path_graph(3, create_using=graph_type) |
|
|
attr = "hello" |
|
|
vals = 3 |
|
|
nx.set_edge_attributes(G, vals, attr) |
|
|
assert G[0][1][attr] == vals |
|
|
assert G[1][2][attr] == vals |
|
|
|
|
|
|
|
|
G = nx.path_graph(3, create_using=graph_type) |
|
|
attr = "hi" |
|
|
edges = [(0, 1), (1, 2)] |
|
|
vals = dict(zip(edges, range(len(edges)))) |
|
|
nx.set_edge_attributes(G, vals, attr) |
|
|
assert G[0][1][attr] == 0 |
|
|
assert G[1][2][attr] == 1 |
|
|
|
|
|
|
|
|
G = nx.path_graph(3, create_using=graph_type) |
|
|
d = {"hi": 0, "hello": 200} |
|
|
edges = [(0, 1)] |
|
|
vals = dict.fromkeys(edges, d) |
|
|
nx.set_edge_attributes(G, vals) |
|
|
assert G[0][1]["hi"] == 0 |
|
|
assert G[0][1]["hello"] == 200 |
|
|
assert G[1][2] == {} |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
|
("values", "name"), |
|
|
( |
|
|
({(0, 1): 1.0, (0, 2): 2.0}, "weight"), |
|
|
({(0, 1): {"weight": 1.0}, (0, 2): {"weight": 2.0}}, None), |
|
|
), |
|
|
) |
|
|
def test_set_edge_attributes_ignores_extra_edges(values, name): |
|
|
"""If `values` is a dict or dict-of-dicts containing edges that are not in |
|
|
G, data associate with these edges should be ignored. |
|
|
""" |
|
|
G = nx.Graph([(0, 1)]) |
|
|
nx.set_edge_attributes(G, values, name) |
|
|
assert G[0][1]["weight"] == 1.0 |
|
|
assert (0, 2) not in G.edges |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("graph_type", (nx.MultiGraph, nx.MultiDiGraph)) |
|
|
def test_set_edge_attributes_multi(graph_type): |
|
|
|
|
|
G = nx.path_graph(3, create_using=graph_type) |
|
|
attr = "hello" |
|
|
vals = 3 |
|
|
nx.set_edge_attributes(G, vals, attr) |
|
|
assert G[0][1][0][attr] == vals |
|
|
assert G[1][2][0][attr] == vals |
|
|
|
|
|
|
|
|
G = nx.path_graph(3, create_using=graph_type) |
|
|
attr = "hi" |
|
|
edges = [(0, 1, 0), (1, 2, 0)] |
|
|
vals = dict(zip(edges, range(len(edges)))) |
|
|
nx.set_edge_attributes(G, vals, attr) |
|
|
assert G[0][1][0][attr] == 0 |
|
|
assert G[1][2][0][attr] == 1 |
|
|
|
|
|
|
|
|
G = nx.path_graph(3, create_using=graph_type) |
|
|
d = {"hi": 0, "hello": 200} |
|
|
edges = [(0, 1, 0)] |
|
|
vals = dict.fromkeys(edges, d) |
|
|
nx.set_edge_attributes(G, vals) |
|
|
assert G[0][1][0]["hi"] == 0 |
|
|
assert G[0][1][0]["hello"] == 200 |
|
|
assert G[1][2][0] == {} |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
|
("values", "name"), |
|
|
( |
|
|
({(0, 1, 0): 1.0, (0, 2, 0): 2.0}, "weight"), |
|
|
({(0, 1, 0): {"weight": 1.0}, (0, 2, 0): {"weight": 2.0}}, None), |
|
|
), |
|
|
) |
|
|
def test_set_edge_attributes_multi_ignores_extra_edges(values, name): |
|
|
"""If `values` is a dict or dict-of-dicts containing edges that are not in |
|
|
G, data associate with these edges should be ignored. |
|
|
""" |
|
|
G = nx.MultiGraph([(0, 1, 0), (0, 1, 1)]) |
|
|
nx.set_edge_attributes(G, values, name) |
|
|
assert G[0][1][0]["weight"] == 1.0 |
|
|
assert G[0][1][1] == {} |
|
|
assert (0, 2) not in G.edges() |
|
|
|
|
|
|
|
|
def test_get_node_attributes(): |
|
|
graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()] |
|
|
for G in graphs: |
|
|
G = nx.path_graph(3, create_using=G) |
|
|
attr = "hello" |
|
|
vals = 100 |
|
|
nx.set_node_attributes(G, vals, attr) |
|
|
attrs = nx.get_node_attributes(G, attr) |
|
|
assert attrs[0] == vals |
|
|
assert attrs[1] == vals |
|
|
assert attrs[2] == vals |
|
|
default_val = 1 |
|
|
G.add_node(4) |
|
|
attrs = nx.get_node_attributes(G, attr, default=default_val) |
|
|
assert attrs[4] == default_val |
|
|
|
|
|
|
|
|
def test_get_edge_attributes(): |
|
|
graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()] |
|
|
for G in graphs: |
|
|
G = nx.path_graph(3, create_using=G) |
|
|
attr = "hello" |
|
|
vals = 100 |
|
|
nx.set_edge_attributes(G, vals, attr) |
|
|
attrs = nx.get_edge_attributes(G, attr) |
|
|
assert len(attrs) == 2 |
|
|
|
|
|
for edge in G.edges: |
|
|
assert attrs[edge] == vals |
|
|
|
|
|
default_val = vals |
|
|
G.add_edge(4, 5) |
|
|
deafult_attrs = nx.get_edge_attributes(G, attr, default=default_val) |
|
|
assert len(deafult_attrs) == 3 |
|
|
|
|
|
for edge in G.edges: |
|
|
assert deafult_attrs[edge] == vals |
|
|
|
|
|
|
|
|
def test_is_empty(): |
|
|
graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()] |
|
|
for G in graphs: |
|
|
assert nx.is_empty(G) |
|
|
G.add_nodes_from(range(5)) |
|
|
assert nx.is_empty(G) |
|
|
G.add_edges_from([(1, 2), (3, 4)]) |
|
|
assert not nx.is_empty(G) |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
|
"graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph] |
|
|
) |
|
|
def test_selfloops(graph_type): |
|
|
G = nx.complete_graph(3, create_using=graph_type) |
|
|
G.add_edge(0, 0) |
|
|
assert nodes_equal(nx.nodes_with_selfloops(G), [0]) |
|
|
assert edges_equal(nx.selfloop_edges(G), [(0, 0)]) |
|
|
assert edges_equal(nx.selfloop_edges(G, data=True), [(0, 0, {})]) |
|
|
assert nx.number_of_selfloops(G) == 1 |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
|
"graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph] |
|
|
) |
|
|
def test_selfloop_edges_attr(graph_type): |
|
|
G = nx.complete_graph(3, create_using=graph_type) |
|
|
G.add_edge(0, 0) |
|
|
G.add_edge(1, 1, weight=2) |
|
|
assert edges_equal( |
|
|
nx.selfloop_edges(G, data=True), [(0, 0, {}), (1, 1, {"weight": 2})] |
|
|
) |
|
|
assert edges_equal(nx.selfloop_edges(G, data="weight"), [(0, 0, None), (1, 1, 2)]) |
|
|
|
|
|
|
|
|
def test_selfloop_edges_multi_with_data_and_keys(): |
|
|
G = nx.complete_graph(3, create_using=nx.MultiGraph) |
|
|
G.add_edge(0, 0, weight=10) |
|
|
G.add_edge(0, 0, weight=100) |
|
|
assert edges_equal( |
|
|
nx.selfloop_edges(G, data="weight", keys=True), [(0, 0, 0, 10), (0, 0, 1, 100)] |
|
|
) |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("graph_type", [nx.Graph, nx.DiGraph]) |
|
|
def test_selfloops_removal(graph_type): |
|
|
G = nx.complete_graph(3, create_using=graph_type) |
|
|
G.add_edge(0, 0) |
|
|
G.remove_edges_from(nx.selfloop_edges(G, keys=True)) |
|
|
G.add_edge(0, 0) |
|
|
G.remove_edges_from(nx.selfloop_edges(G, data=True)) |
|
|
G.add_edge(0, 0) |
|
|
G.remove_edges_from(nx.selfloop_edges(G, keys=True, data=True)) |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("graph_type", [nx.MultiGraph, nx.MultiDiGraph]) |
|
|
def test_selfloops_removal_multi(graph_type): |
|
|
"""test removing selfloops behavior vis-a-vis altering a dict while iterating. |
|
|
cf. gh-4068""" |
|
|
G = nx.complete_graph(3, create_using=graph_type) |
|
|
|
|
|
G.add_edge(0, 0) |
|
|
G.add_edge(0, 0) |
|
|
G.remove_edges_from(nx.selfloop_edges(G)) |
|
|
assert (0, 0) not in G.edges() |
|
|
|
|
|
G.add_edge(0, 0) |
|
|
G.add_edge(0, 0) |
|
|
with pytest.raises(RuntimeError): |
|
|
G.remove_edges_from(nx.selfloop_edges(G, keys=True)) |
|
|
|
|
|
G.add_edge(0, 0) |
|
|
G.add_edge(0, 0) |
|
|
with pytest.raises(TypeError): |
|
|
G.remove_edges_from(nx.selfloop_edges(G, data=True)) |
|
|
|
|
|
G.add_edge(0, 0) |
|
|
G.add_edge(0, 0) |
|
|
with pytest.raises(RuntimeError): |
|
|
G.remove_edges_from(nx.selfloop_edges(G, data=True, keys=True)) |
|
|
|
|
|
|
|
|
def test_pathweight(): |
|
|
valid_path = [1, 2, 3] |
|
|
invalid_path = [1, 3, 2] |
|
|
graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()] |
|
|
edges = [ |
|
|
(1, 2, {"cost": 5, "dist": 6}), |
|
|
(2, 3, {"cost": 3, "dist": 4}), |
|
|
(1, 2, {"cost": 1, "dist": 2}), |
|
|
] |
|
|
for graph in graphs: |
|
|
graph.add_edges_from(edges) |
|
|
assert nx.path_weight(graph, valid_path, "cost") == 4 |
|
|
assert nx.path_weight(graph, valid_path, "dist") == 6 |
|
|
pytest.raises(nx.NetworkXNoPath, nx.path_weight, graph, invalid_path, "cost") |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
|
"G", (nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()) |
|
|
) |
|
|
def test_ispath(G): |
|
|
G.add_edges_from([(1, 2), (2, 3), (1, 2), (3, 4)]) |
|
|
valid_path = [1, 2, 3, 4] |
|
|
invalid_path = [1, 2, 4, 3] |
|
|
another_invalid_path = [1, 2, 3, 4, 5] |
|
|
assert nx.is_path(G, valid_path) |
|
|
assert not nx.is_path(G, invalid_path) |
|
|
assert not nx.is_path(G, another_invalid_path) |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph())) |
|
|
def test_restricted_view(G): |
|
|
G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)]) |
|
|
G.add_node(4) |
|
|
H = nx.restricted_view(G, [0, 2, 5], [(1, 2), (3, 4)]) |
|
|
assert set(H.nodes()) == {1, 3, 4} |
|
|
assert set(H.edges()) == {(1, 1)} |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("G", (nx.MultiGraph(), nx.MultiDiGraph())) |
|
|
def test_restricted_view_multi(G): |
|
|
G.add_edges_from( |
|
|
[(0, 1, 0), (0, 2, 0), (0, 3, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 2, 0)] |
|
|
) |
|
|
G.add_node(4) |
|
|
H = nx.restricted_view(G, [0, 2, 5], [(1, 2, 0), (3, 4, 0)]) |
|
|
assert set(H.nodes()) == {1, 3, 4} |
|
|
assert set(H.edges()) == {(1, 1)} |
|
|
|