js-hub / lib /parse-safetensors-metadata.spec.ts
coyotte508's picture
coyotte508 HF Staff
Add 1 files
21dd449 verified
import { assert, it, describe } from "vitest";
import { parseSafetensorsMetadata, parseSafetensorsShardFilename } from "./parse-safetensors-metadata";
import { sum } from "../utils/sum";
describe("parseSafetensorsMetadata", () => {
it("fetch info for single-file (with the default conventional filename)", async () => {
const parse = await parseSafetensorsMetadata({
repo: "bert-base-uncased",
computeParametersCount: true,
revision: "86b5e0934494bd15c9632b12f734a8a67f723594",
});
assert(!parse.sharded);
assert.deepStrictEqual(parse.header.__metadata__, { format: "pt" });
// Example of one tensor (the header contains many tensors)
assert.deepStrictEqual(parse.header["bert.embeddings.LayerNorm.beta"], {
dtype: "F32",
shape: [768],
data_offsets: [0, 3072],
});
assert.deepStrictEqual(parse.parameterCount, { F32: 110_106_428 });
assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 110_106_428);
// total params = 110m
});
it("fetch info for sharded (with the default conventional filename)", async () => {
const parse = await parseSafetensorsMetadata({
repo: "bigscience/bloom",
computeParametersCount: true,
revision: "053d9cd9fbe814e091294f67fcfedb3397b954bb",
});
assert(parse.sharded);
assert.strictEqual(Object.keys(parse.headers).length, 72);
// This model has 72 shards!
// Example of one tensor inside one file
assert.deepStrictEqual(parse.headers["model_00012-of-00072.safetensors"]["h.10.input_layernorm.weight"], {
dtype: "BF16",
shape: [14336],
data_offsets: [3288649728, 3288678400],
});
assert.deepStrictEqual(parse.parameterCount, { BF16: 176_247_271_424 });
assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 176_247_271_424);
// total params = 176B
});
it("fetch info for single-file with multiple dtypes", async () => {
const parse = await parseSafetensorsMetadata({
repo: "roberta-base",
computeParametersCount: true,
revision: "e2da8e2f811d1448a5b465c236feacd80ffbac7b",
});
assert(!parse.sharded);
assert.deepStrictEqual(parse.parameterCount, { F32: 124_697_433, I64: 514 });
assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 124_697_947);
// total params = 124m
});
it("fetch info for single-file with file path", async () => {
const parse = await parseSafetensorsMetadata({
repo: "CompVis/stable-diffusion-v1-4",
computeParametersCount: true,
path: "unet/diffusion_pytorch_model.safetensors",
revision: "133a221b8aa7292a167afc5127cb63fb5005638b",
});
assert(!parse.sharded);
assert.deepStrictEqual(parse.header.__metadata__, { format: "pt" });
// Example of one tensor (the header contains many tensors)
assert.deepStrictEqual(parse.header["up_blocks.3.resnets.0.norm2.bias"], {
dtype: "F32",
shape: [320],
data_offsets: [3_409_382_416, 3_409_383_696],
});
assert.deepStrictEqual(parse.parameterCount, { F32: 859_520_964 });
assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 859_520_964);
});
it("fetch info for sharded (with the default conventional filename) with file path", async () => {
const parse = await parseSafetensorsMetadata({
repo: "Alignment-Lab-AI/ALAI-gemma-7b",
computeParametersCount: true,
path: "7b/1/model.safetensors.index.json",
revision: "37e307261fe97bbf8b2463d61dbdd1a10daa264c",
});
assert(parse.sharded);
assert.strictEqual(Object.keys(parse.headers).length, 4);
assert.deepStrictEqual(parse.headers["model-00004-of-00004.safetensors"]["model.layers.24.mlp.up_proj.weight"], {
dtype: "BF16",
shape: [24576, 3072],
data_offsets: [301996032, 452990976],
});
assert.deepStrictEqual(parse.parameterCount, { BF16: 8_537_680_896 });
assert.deepStrictEqual(sum(Object.values(parse.parameterCount)), 8_537_680_896);
});
it("should detect sharded safetensors filename", async () => {
const safetensorsFilename = "model_00005-of-00072.safetensors"; // https://huggingface.co/bigscience/bloom/blob/4d8e28c67403974b0f17a4ac5992e4ba0b0dbb6f/model_00005-of-00072.safetensors
const safetensorsShardFileInfo = parseSafetensorsShardFilename(safetensorsFilename);
assert.strictEqual(safetensorsShardFileInfo?.prefix, "model_");
assert.strictEqual(safetensorsShardFileInfo?.basePrefix, "model");
assert.strictEqual(safetensorsShardFileInfo?.shard, "00005");
assert.strictEqual(safetensorsShardFileInfo?.total, "00072");
});
});