coyotespike commited on
Commit
ec9848c
·
1 Parent(s): c89b575

Testing folder creation

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 281.00 +/- 14.97
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 287.21 +/- 25.48
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ff591e3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ff591e430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ff591e4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ff591e550>", "_build": "<function ActorCriticPolicy._build at 0x7f0ff591e5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0ff591e670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ff591e700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0ff591e790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ff591e820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ff591e8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ff591e940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0ff5916900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671475080909104306, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC4Zzz7L7k+WTZAvKv8275/CDw9Er60vAAAAAAAAAAAZq5yu4+CSLyMb0S9vwpTPTUm3jy2yTu8AACAPwAAgD/7+rG+T7M4P+JUnD3eRSO/HB4Bv+JyFz4AAAAAAAAAAACg+7vcX78/RvjcvJPe4b0Z+nI5jj8BvQAAAAAAAAAAM2fAvAVel7sLvtm+FfJKvtIUy7twdJ8/AACAPwAAgD+TTB2+oDKsP4FdEL/uVOO+mliBvgjrf74AAAAAAAAAAEDNfL58YQw/anvhPtxzB79AGx++kcCiPgAAAAAAAAAAgJh4Pa5c4z5ec3S9RqHxvjy5xj3+Hjq9AAAAAAAAAAAAunc8j+Y1uhqhpzOXenMvUwiaukLst7MAAIA/AACAPwAsxLy2fka8NSYqvkCvG77SgeQ82HwhPwAAgD8AAIA/LaajPpCzMj8I1pe9P3Mxv5Bo9D7itTq+AAAAAAAAAAAzpQo9weTavLG0AL+7hp69wgsJPlvvIT4AAIA/AACAPw1pmL18WA4/2/zPPRw+D78fhY299TvzPQAAAAAAAAAAM9mPvE+TJrxW98Q8pPz0vCfRI72LlZM+AACAPwAAgD9qSIs+lCZqP05JzT6hYiu/ckH7PvJLRz4AAAAAAAAAAKbQhj36sio+k88Cvqxot75y5Qg9nb+avQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIA1/RrVckcUCUhpRSlIwBbJRL1IwBdJRHQKRw1qQA+6l1fZQoaAZoCWgPQwiwdD48C+xxQJSGlFKUaBVLwWgWR0CkcPBK15SndX2UKGgGaAloD0MIfJv+7MdZckCUhpRSlGgVTd4CaBZHQKRxUxOclPd1fZQoaAZoCWgPQwimRX2Se4lyQJSGlFKUaBVLuGgWR0CkcXAEEC/5dX2UKGgGaAloD0MIJsXHJyQsckCUhpRSlGgVS9BoFkdApHGSwfQrtnV9lChoBmgJaA9DCGoSvCHNoXJAlIaUUpRoFUvgaBZHQKRxm9Mbm2d1fZQoaAZoCWgPQwhkd4GSgjlyQJSGlFKUaBVL9GgWR0Ckcbj6vaDgdX2UKGgGaAloD0MI9Z1flGAbc0CUhpRSlGgVS9FoFkdApHH/lOoHcHV9lChoBmgJaA9DCFWEm4wq9nFAlIaUUpRoFUu1aBZHQKRyL3kgfU51fZQoaAZoCWgPQwjUKvpD8yFwQJSGlFKUaBVL82gWR0CkcjreANG3dX2UKGgGaAloD0MI+N7foH3acUCUhpRSlGgVS7RoFkdApHKBQHiWFHV9lChoBmgJaA9DCJmesMTDG3JAlIaUUpRoFUvEaBZHQKRykSxqwhZ1fZQoaAZoCWgPQwgVx4FXC9lwQJSGlFKUaBVL02gWR0CkcuwDNhVmdX2UKGgGaAloD0MIu37BblikcUCUhpRSlGgVS6doFkdApHLy/O+qR3V9lChoBmgJaA9DCCNli6SdInJAlIaUUpRoFUvAaBZHQKRzKXKKYRd1fZQoaAZoCWgPQwgcQL/vX5dxQJSGlFKUaBVLxWgWR0CkcyiExqO+dX2UKGgGaAloD0MIhNiZQif8cECUhpRSlGgVS8RoFkdApHOrXL/0d3V9lChoBmgJaA9DCFNA2v8AMnJAlIaUUpRoFUu0aBZHQKRzuLYPGyZ1fZQoaAZoCWgPQwjFPCtpxTFxQJSGlFKUaBVL1WgWR0Ckc/3hOxjbdX2UKGgGaAloD0MIGJgVijQEcECUhpRSlGgVS8toFkdApHQOn889wHV9lChoBmgJaA9DCBuciH7twXNAlIaUUpRoFUvDaBZHQKR0FNucc2l1fZQoaAZoCWgPQwiWzRySGpJyQJSGlFKUaBVLzmgWR0CkdIBB7eEadX2UKGgGaAloD0MIPPVIg5uQckCUhpRSlGgVS8hoFkdApHSwh6jWTXV9lChoBmgJaA9DCJD5gEAnunFAlIaUUpRoFUvgaBZHQKR08RK6Fuh1fZQoaAZoCWgPQwhckgN29QRzQJSGlFKUaBVL42gWR0CkdV6/7BO6dX2UKGgGaAloD0MI7WRwlLxuc0CUhpRSlGgVS8doFkdApHVlIqbz9XV9lChoBmgJaA9DCOlJmdQQeHJAlIaUUpRoFUu3aBZHQKR1dcgQpWp1fZQoaAZoCWgPQwg2AvG6vgpzQJSGlFKUaBVL32gWR0CkjUbSApazdX2UKGgGaAloD0MIWtb9Y+EqcUCUhpRSlGgVS7JoFkdApI12VZ9uxnV9lChoBmgJaA9DCKzmOSLfp3FAlIaUUpRoFUvwaBZHQKSNuoBq9Gt1fZQoaAZoCWgPQwgQsiyYuF9yQJSGlFKUaBVLyGgWR0CkjcpO32EkdX2UKGgGaAloD0MIqrpHNpdjc0CUhpRSlGgVS8FoFkdApI4TKHO8kHV9lChoBmgJaA9DCCPcZFQZGHJAlIaUUpRoFUvWaBZHQKSOREBsANp1fZQoaAZoCWgPQwi1MuGXOhdyQJSGlFKUaBVL2WgWR0CkjmCNjslcdX2UKGgGaAloD0MISS2UTI4ycUCUhpRSlGgVTecCaBZHQKSOp87ZFod1fZQoaAZoCWgPQwjSAN4CCedzQJSGlFKUaBVL2GgWR0CkjuQ7T2FndX2UKGgGaAloD0MIaRt/orLicUCUhpRSlGgVS9JoFkdApI9EMkQf63V9lChoBmgJaA9DCGYS9YLPgXFAlIaUUpRoFUu2aBZHQKSPWGoJiRZ1fZQoaAZoCWgPQwg1DYrmwSZyQJSGlFKUaBVL7WgWR0Ckj1w1JlJ6dX2UKGgGaAloD0MI2XqGcAwNckCUhpRSlGgVS75oFkdApI93nB+F13V9lChoBmgJaA9DCEurIXGPI3JAlIaUUpRoFUutaBZHQKSPlHR1HON1fZQoaAZoCWgPQwgfMXpu4dlxQJSGlFKUaBVL02gWR0CkkD6sp5NXdX2UKGgGaAloD0MImzv6X+70cECUhpRSlGgVS+VoFkdApJDPMlkYoHV9lChoBmgJaA9DCEnXTL6ZgXJAlIaUUpRoFUu2aBZHQKSQ01XNke91fZQoaAZoCWgPQwiYaftX1olyQJSGlFKUaBVL02gWR0CkkO1Sn+AFdX2UKGgGaAloD0MIg94bQ0D7ckCUhpRSlGgVS9ZoFkdApJEovtdAxHV9lChoBmgJaA9DCOrL0k4Nb3JAlIaUUpRoFUvCaBZHQKSRgBWgezV1fZQoaAZoCWgPQwjwbmWJDq1xQJSGlFKUaBVL12gWR0CkkY+49X9zdX2UKGgGaAloD0MIVtehmhJgckCUhpRSlGgVS8NoFkdApJHvAfuCw3V9lChoBmgJaA9DCLiU88WeXnJAlIaUUpRoFUu+aBZHQKSR9+PzWf91fZQoaAZoCWgPQwjH2AkvQXNhQJSGlFKUaBVN6ANoFkdApJH/cN6PbXV9lChoBmgJaA9DCGx7uyX5r3JAlIaUUpRoFUvRaBZHQKSSLR4yGi51fZQoaAZoCWgPQwjoaiv2V+5wQJSGlFKUaBVLzWgWR0Ckkj5sKsuGdX2UKGgGaAloD0MInYU97XB0ckCUhpRSlGgVS9RoFkdApJJqWu5jIHV9lChoBmgJaA9DCOS+1TpxcXJAlIaUUpRoFU2nAWgWR0CkkpcbzbvgdX2UKGgGaAloD0MIn+OjxRmUc0CUhpRSlGgVS95oFkdApJMcxGlQ/HV9lChoBmgJaA9DCEkrvqFwFnFAlIaUUpRoFUvJaBZHQKSTT9YOlO51fZQoaAZoCWgPQwjacFgaeCdyQJSGlFKUaBVLymgWR0Ckk2iRW912dX2UKGgGaAloD0MIn3djQaE2c0CUhpRSlGgVS+FoFkdApJOWYKIBR3V9lChoBmgJaA9DCKz9ne0Rr3NAlIaUUpRoFUvWaBZHQKSTvJOFg2J1fZQoaAZoCWgPQwhM/5JU5kF0QJSGlFKUaBVLvmgWR0Ckk8qAjIJadX2UKGgGaAloD0MIRbde00MkcECUhpRSlGgVS89oFkdApJPuNtIkJXV9lChoBmgJaA9DCK8JaY0BFnJAlIaUUpRoFUu1aBZHQKSUAPZqVQh1fZQoaAZoCWgPQwhb0HtjCDVyQJSGlFKUaBVL0mgWR0CklEyPU8V6dX2UKGgGaAloD0MI/WZiulCmcUCUhpRSlGgVS8VoFkdApJRgUDdP+HV9lChoBmgJaA9DCIuk3ejjfHFAlIaUUpRoFUvaaBZHQKSUbuJk5IZ1fZQoaAZoCWgPQwjuJ2N8mJdwQJSGlFKUaBVLyWgWR0CklHuN5t3wdX2UKGgGaAloD0MIaAjHLPvQb0CUhpRSlGgVS7xoFkdApJSDylN1yXV9lChoBmgJaA9DCMpuZvTjf3NAlIaUUpRoFU0mAmgWR0CklLG9QGfPdX2UKGgGaAloD0MIKcsQx7pdc0CUhpRSlGgVS8doFkdApJTM2P1cuHV9lChoBmgJaA9DCD7NyYtMbHFAlIaUUpRoFUuzaBZHQKSVXdmg8KZ1fZQoaAZoCWgPQwh5IR0eghVyQJSGlFKUaBVLq2gWR0CklaqT8pCsdX2UKGgGaAloD0MIy0qTUlD9cUCUhpRSlGgVS+loFkdApJWvaakRBnV9lChoBmgJaA9DCP/mxYkvr3NAlIaUUpRoFUvaaBZHQKSVuINVinZ1fZQoaAZoCWgPQwjPvYdLDtVyQJSGlFKUaBVL22gWR0CklgN1hb4bdX2UKGgGaAloD0MI07zjFF0Mc0CUhpRSlGgVS7xoFkdApJYCpHZsbnV9lChoBmgJaA9DCEYMO4yJ5XBAlIaUUpRoFUu5aBZHQKSWVR1oxpN1fZQoaAZoCWgPQwgzFk1nZ+BzQJSGlFKUaBVL1WgWR0CkllhBJI1+dX2UKGgGaAloD0MIpkOn512NZUCUhpRSlGgVTegDaBZHQKSWWkona391fZQoaAZoCWgPQwgvpwTEpORxQJSGlFKUaBVLr2gWR0CklmbgsK9gdX2UKGgGaAloD0MI/OQoQNQlc0CUhpRSlGgVS8NoFkdApJZ/O8kD6nV9lChoBmgJaA9DCCDRBIpY8XBAlIaUUpRoFUu9aBZHQKSWj+BpYcN1fZQoaAZoCWgPQwiW6ZeI9yNzQJSGlFKUaBVNEgFoFkdApJayjxkNF3V9lChoBmgJaA9DCKVL/5JUNHFAlIaUUpRoFUvWaBZHQKSWtutOmBR1fZQoaAZoCWgPQwg5Y5gT9ItwQJSGlFKUaBVL3GgWR0Cklvo2GZeBdX2UKGgGaAloD0MIsB73rRaYcUCUhpRSlGgVS/VoFkdApJdQexOclXV9lChoBmgJaA9DCHi2R294NHJAlIaUUpRoFUvHaBZHQKSXYkJrtVt1fZQoaAZoCWgPQwjAd5s3zhZzQJSGlFKUaBVLxGgWR0Ckl5qNp/PPdX2UKGgGaAloD0MI53Pudr0Xc0CUhpRSlGgVS8VoFkdApJekx/NJOHV9lChoBmgJaA9DCCl64GOwknNAlIaUUpRoFUvQaBZHQKSXs8AaNuN1fZQoaAZoCWgPQwhgIt46/4RyQJSGlFKUaBVLymgWR0Ckl+oVEd/8dX2UKGgGaAloD0MINGYS9QLXc0CUhpRSlGgVS8xoFkdApJfwj4YaYXV9lChoBmgJaA9DCNqOqbsypXNAlIaUUpRoFUvCaBZHQKSYIuYhMal1fZQoaAZoCWgPQwiXWBmNvPNxQJSGlFKUaBVLtGgWR0CkmClAu7HydX2UKGgGaAloD0MI1ouhnOhnckCUhpRSlGgVS7BoFkdApJgwGW2PUHV9lChoBmgJaA9DCHAH6pSHKXJAlIaUUpRoFUvJaBZHQKSYNnvlU6x1fZQoaAZoCWgPQwg8LT9wVbBxQJSGlFKUaBVLz2gWR0CkmET19ORDdX2UKGgGaAloD0MI0A8jhAc9c0CUhpRSlGgVS99oFkdApJhyTY/Vy3V9lChoBmgJaA9DCJwwYTSrDnBAlIaUUpRoFUvOaBZHQKSYmzguRLd1fZQoaAZoCWgPQwgOorWijddxQJSGlFKUaBVL1GgWR0CkmKR6F/QTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ff591e3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ff591e430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ff591e4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ff591e550>", "_build": "<function ActorCriticPolicy._build at 0x7f0ff591e5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0ff591e670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ff591e700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0ff591e790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ff591e820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ff591e8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ff591e940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0ff5916900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 2000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671480142730673105, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA037tZXqM/CrnovC8dDr/tiAs8TIS6vAAAAAAAAAAAMw+TvDxnrj/mzm6+3VrGvv1de7zyTAO+AAAAAAAAAAAmrpo9hke0P4Bo7j707ka+AeGePdBCbz4AAAAAAAAAAKYlyr3a94k/bm9Avmq+ML+fgjO+PkUVvQAAAAAAAAAATRs/Pha4Az90Dsm9rZz1vtH7dj52ZCG+AAAAAAAAAACat0W+6N35Ps7zWj7kMfK+ga4YvioSED4AAAAAAAAAAGbmMTnXSVy7xMy/PH+drjwbV9C8Mk+UPQAAgD8AAIA/AERzPkOsCT/DAtK98FsTv2pBwT4fSxu+AAAAAAAAAAAGpRY+0kH+PlPZZr1gSPe+dsxMPqg6rL0AAAAAAAAAAM2ELbtggpA/3t2ru0b3K7/zupC8DH8DvQAAAAAAAAAAZhOHPWBNrT+KPx4/W0m+vlA1FTvDBC4+AAAAAAAAAAANBMK95nQ9P3IMZb1ZGBW/kFQEvioCdT0AAAAAAAAAAGa2lLq0kLM/DhNrvROyRL4vWKs67spSPAAAAAAAAAAAM/QyPsTvZD92Fmk+bOcjv7gboj4SoJQ9AAAAAAAAAACa9uu8FIiFunoyzb17hYU8jx5eO/qeaL0AAIA/AACAP5rl6Lxc93e6eoMdt8kE0rFrCB+7WvE3NgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -7.192, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBaipZavyckCUhpRSlIwBbJRLsYwBdJRHQLRT44SHuZ11fZQoaAZoCWgPQwijW6/pwZRvQJSGlFKUaBVLt2gWR0C0U+08JUo8dX2UKGgGaAloD0MI7ZxmgXaJbkCUhpRSlGgVS7hoFkdAtFPvpqynk3V9lChoBmgJaA9DCMeb/BbdB3JAlIaUUpRoFUu8aBZHQLRT9d69kBl1fZQoaAZoCWgPQwgkQiPYuEhyQJSGlFKUaBVLvWgWR0C0U/a5sj3VdX2UKGgGaAloD0MIvK/KhQqBcECUhpRSlGgVS8JoFkdAtFP+X6ZYxXV9lChoBmgJaA9DCHyeP22U43FAlIaUUpRoFUvCaBZHQLRT/h9LHuJ1fZQoaAZoCWgPQwi7SKEsPAlwQJSGlFKUaBVLxGgWR0C0VAEh7mdRdX2UKGgGaAloD0MI0CfyJKnmckCUhpRSlGgVS8loFkdAtFQGHnEET3V9lChoBmgJaA9DCI80uK1tuHJAlIaUUpRoFUvLaBZHQLRUCReTmnx1fZQoaAZoCWgPQwiwVu2akFxxQJSGlFKUaBVLzWgWR0C0VAry6MBIdX2UKGgGaAloD0MIDW/W4D1lckCUhpRSlGgVS89oFkdAtFQMiFCb+nV9lChoBmgJaA9DCGO4OgDiuXBAlIaUUpRoFUvPaBZHQLRUDGqgh8p1fZQoaAZoCWgPQwiFmEuqtiFxQJSGlFKUaBVL1mgWR0C0VBLtZ3cIdX2UKGgGaAloD0MIJ71vfG0fcUCUhpRSlGgVS95oFkdAtFQbMKTjenV9lChoBmgJaA9DCHo1QGmo2nJAlIaUUpRoFUvhaBZHQLRUHJhOP/91fZQoaAZoCWgPQwiC4seYu5pyQJSGlFKUaBVLuWgWR0C0VL6CDmKZdX2UKGgGaAloD0MIGRu62R8db0CUhpRSlGgVS7doFkdAtFTL8Q7LdXV9lChoBmgJaA9DCKKyYU3lgHJAlIaUUpRoFUvCaBZHQLRU1SKFZgZ1fZQoaAZoCWgPQwjAPGTKh+lwQJSGlFKUaBVLwWgWR0C0VNmKyfL+dX2UKGgGaAloD0MI+kZ0zzpab0CUhpRSlGgVS7hoFkdAtFTimtQsPXV9lChoBmgJaA9DCEkrvqEwYnFAlIaUUpRoFUvBaBZHQLRU4sFt8/l1fZQoaAZoCWgPQwhuaMpOfx1zQJSGlFKUaBVLzmgWR0C0VOThcZ+AdX2UKGgGaAloD0MI/vLJiqHickCUhpRSlGgVS8loFkdAtFTrWUbDM3V9lChoBmgJaA9DCNQLPs2JqnNAlIaUUpRoFUvMaBZHQLRU8XzDn/11fZQoaAZoCWgPQwgO2xZldiZyQJSGlFKUaBVL0GgWR0C0VQEvK2a2dX2UKGgGaAloD0MIoWZIFcWnckCUhpRSlGgVS75oFkdAtFUBNGmUGHV9lChoBmgJaA9DCDp2UInru3BAlIaUUpRoFUvQaBZHQLRVCNXYDkl1fZQoaAZoCWgPQwieRIR/EVdzQJSGlFKUaBVL3GgWR0C0VQ0IsyzpdX2UKGgGaAloD0MIcnDpmLOVckCUhpRSlGgVS+FoFkdAtFUN6F/QSnV9lChoBmgJaA9DCAQeGEC4pXBAlIaUUpRoFUvPaBZHQLRVEa+vhZR1fZQoaAZoCWgPQwhEp+fd2PtvQJSGlFKUaBVL5mgWR0C0VRfR/mT1dX2UKGgGaAloD0MIUmUYd4PyckCUhpRSlGgVS7loFkdAtFWbpJPIn3V9lChoBmgJaA9DCCVdM/km3XJAlIaUUpRoFUuqaBZHQLRVodE9dNZ1fZQoaAZoCWgPQwj+ZffkoQ5wQJSGlFKUaBVLtWgWR0C0Vbm1IAfddX2UKGgGaAloD0MIUfnX8koCc0CUhpRSlGgVS7ZoFkdAtFW9XNke63V9lChoBmgJaA9DCLgFS3XBBXBAlIaUUpRoFUu5aBZHQLRVvzk6tDF1fZQoaAZoCWgPQwjiytk74xRxQJSGlFKUaBVL0mgWR0C0VcsQI2OydX2UKGgGaAloD0MIFviKbr00dECUhpRSlGgVS9loFkdAtFXb6YVqOHV9lChoBmgJaA9DCIFCPX1EP3JAlIaUUpRoFUu0aBZHQLRV5/9YOlR1fZQoaAZoCWgPQwgWTz3SoHNwQJSGlFKUaBVL0WgWR0C0Ve2UB4lhdX2UKGgGaAloD0MIbmsLz8uIcECUhpRSlGgVS9poFkdAtFXx3pwCKnV9lChoBmgJaA9DCNBDbRtGm3JAlIaUUpRoFUu8aBZHQLRV8wcYIjZ1fZQoaAZoCWgPQwjoSgSqfzRxQJSGlFKUaBVLvWgWR0C0VfjMibDudX2UKGgGaAloD0MIIenTKvqjc0CUhpRSlGgVS9doFkdAtFYGmzjWCnV9lChoBmgJaA9DCDkJpS9EOHJAlIaUUpRoFUvaaBZHQLRWCj8k2P11fZQoaAZoCWgPQwhI+N7fYE9xQJSGlFKUaBVL1mgWR0C0Vg1yFPBSdX2UKGgGaAloD0MITntKzon5cECUhpRSlGgVS91oFkdAtFYl/oaDPHV9lChoBmgJaA9DCPAZidCIEHNAlIaUUpRoFUvCaBZHQLRWkuGKyfN1fZQoaAZoCWgPQwh5lEp4wohyQJSGlFKUaBVLyGgWR0C0VpUleF+NdX2UKGgGaAloD0MIn8vUJHgzcECUhpRSlGgVS8poFkdAtFa2vA44qHV9lChoBmgJaA9DCN/hdmjYz3JAlIaUUpRoFUvRaBZHQLRWw0k4WDZ1fZQoaAZoCWgPQwhQOLu1TIBzQJSGlFKUaBVLvWgWR0C0VskrPMSsdX2UKGgGaAloD0MI/I7hsV+ackCUhpRSlGgVS9VoFkdAtFbKfRNRFnV9lChoBmgJaA9DCBIUP8ZccnFAlIaUUpRoFUvcaBZHQLRW3teD3/R1fZQoaAZoCWgPQwjP2Jds/DZxQJSGlFKUaBVLwGgWR0C0Vuol6Z6VdX2UKGgGaAloD0MI8Wd4s8bCcUCUhpRSlGgVS7JoFkdAtFbq42CNCXV9lChoBmgJaA9DCLhWe9gLNXFAlIaUUpRoFUvHaBZHQLRW7n3+MqB1fZQoaAZoCWgPQwjFxydkZ/VyQJSGlFKUaBVLzWgWR0C0VvBbSqlxdX2UKGgGaAloD0MIgGH5863HckCUhpRSlGgVS9doFkdAtFcAB7u2JHV9lChoBmgJaA9DCP1OkxnvwXJAlIaUUpRoFUvHaBZHQLRXARVp9JB1fZQoaAZoCWgPQwjpmzQNCtJvQJSGlFKUaBVLx2gWR0C0VweLzf78dX2UKGgGaAloD0MIGVdcHJWbckCUhpRSlGgVS/NoFkdAtFcWTlkpZ3V9lChoBmgJaA9DCDS+Ly6VoHFAlIaUUpRoFUvQaBZHQLRXKSDRMOB1fZQoaAZoCWgPQwiMTSuFwNBxQJSGlFKUaBVLvGgWR0C0V3rORkmQdX2UKGgGaAloD0MI/12fOeshdECUhpRSlGgVS8poFkdAtFePX4CZGHV9lChoBmgJaA9DCOj3/ZsX+05AlIaUUpRoFUuCaBZHQLRXm4TbnHN1fZQoaAZoCWgPQwhvumWHOCVwQJSGlFKUaBVLvmgWR0C0V56ab4JvdX2UKGgGaAloD0MIF2TL8rVzc0CUhpRSlGgVS7RoFkdAtFeeZOSGJ3V9lChoBmgJaA9DCAOWXMXi2HFAlIaUUpRoFUvJaBZHQLRXvpR4yGl1fZQoaAZoCWgPQwi3YRQEjy5yQJSGlFKUaBVLumgWR0C0V8AaBI4EdX2UKGgGaAloD0MIxr/PuDAackCUhpRSlGgVS71oFkdAtFfRbaAWi3V9lChoBmgJaA9DCLbWFwltWW9AlIaUUpRoFUveaBZHQLRX11TisGR1fZQoaAZoCWgPQwiIEFfO3oBxQJSGlFKUaBVLxGgWR0C0V9x4yGi6dX2UKGgGaAloD0MIwa27eSoGcECUhpRSlGgVS7poFkdAtFfhudf9gnV9lChoBmgJaA9DCI49ey6TMXFAlIaUUpRoFUvQaBZHQLRX5hbnoxJ1fZQoaAZoCWgPQwhp5V5g1pFwQJSGlFKUaBVL1GgWR0C0V+qIznA7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1250, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunarLanderSimple2Thousand.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e11fffb9c155e15e3a8130b88b11aa3b41f7fcadce9bbf296b7b66c640f8968b
3
+ size 145840
lunarLanderSimple2Thousand/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lunarLanderSimple2Thousand/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ff591e3a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ff591e430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ff591e4c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ff591e550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0ff591e5e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0ff591e670>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ff591e700>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0ff591e790>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ff591e820>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ff591e8b0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ff591e940>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0ff5916900>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 2000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671480142730673105,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA037tZXqM/CrnovC8dDr/tiAs8TIS6vAAAAAAAAAAAMw+TvDxnrj/mzm6+3VrGvv1de7zyTAO+AAAAAAAAAAAmrpo9hke0P4Bo7j707ka+AeGePdBCbz4AAAAAAAAAAKYlyr3a94k/bm9Avmq+ML+fgjO+PkUVvQAAAAAAAAAATRs/Pha4Az90Dsm9rZz1vtH7dj52ZCG+AAAAAAAAAACat0W+6N35Ps7zWj7kMfK+ga4YvioSED4AAAAAAAAAAGbmMTnXSVy7xMy/PH+drjwbV9C8Mk+UPQAAgD8AAIA/AERzPkOsCT/DAtK98FsTv2pBwT4fSxu+AAAAAAAAAAAGpRY+0kH+PlPZZr1gSPe+dsxMPqg6rL0AAAAAAAAAAM2ELbtggpA/3t2ru0b3K7/zupC8DH8DvQAAAAAAAAAAZhOHPWBNrT+KPx4/W0m+vlA1FTvDBC4+AAAAAAAAAAANBMK95nQ9P3IMZb1ZGBW/kFQEvioCdT0AAAAAAAAAAGa2lLq0kLM/DhNrvROyRL4vWKs67spSPAAAAAAAAAAAM/QyPsTvZD92Fmk+bOcjv7gboj4SoJQ9AAAAAAAAAACa9uu8FIiFunoyzb17hYU8jx5eO/qeaL0AAIA/AACAP5rl6Lxc93e6eoMdt8kE0rFrCB+7WvE3NgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -7.192,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVhQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBaipZavyckCUhpRSlIwBbJRLsYwBdJRHQLRT44SHuZ11fZQoaAZoCWgPQwijW6/pwZRvQJSGlFKUaBVLt2gWR0C0U+08JUo8dX2UKGgGaAloD0MI7ZxmgXaJbkCUhpRSlGgVS7hoFkdAtFPvpqynk3V9lChoBmgJaA9DCMeb/BbdB3JAlIaUUpRoFUu8aBZHQLRT9d69kBl1fZQoaAZoCWgPQwgkQiPYuEhyQJSGlFKUaBVLvWgWR0C0U/a5sj3VdX2UKGgGaAloD0MIvK/KhQqBcECUhpRSlGgVS8JoFkdAtFP+X6ZYxXV9lChoBmgJaA9DCHyeP22U43FAlIaUUpRoFUvCaBZHQLRT/h9LHuJ1fZQoaAZoCWgPQwi7SKEsPAlwQJSGlFKUaBVLxGgWR0C0VAEh7mdRdX2UKGgGaAloD0MI0CfyJKnmckCUhpRSlGgVS8loFkdAtFQGHnEET3V9lChoBmgJaA9DCI80uK1tuHJAlIaUUpRoFUvLaBZHQLRUCReTmnx1fZQoaAZoCWgPQwiwVu2akFxxQJSGlFKUaBVLzWgWR0C0VAry6MBIdX2UKGgGaAloD0MIDW/W4D1lckCUhpRSlGgVS89oFkdAtFQMiFCb+nV9lChoBmgJaA9DCGO4OgDiuXBAlIaUUpRoFUvPaBZHQLRUDGqgh8p1fZQoaAZoCWgPQwiFmEuqtiFxQJSGlFKUaBVL1mgWR0C0VBLtZ3cIdX2UKGgGaAloD0MIJ71vfG0fcUCUhpRSlGgVS95oFkdAtFQbMKTjenV9lChoBmgJaA9DCHo1QGmo2nJAlIaUUpRoFUvhaBZHQLRUHJhOP/91fZQoaAZoCWgPQwiC4seYu5pyQJSGlFKUaBVLuWgWR0C0VL6CDmKZdX2UKGgGaAloD0MIGRu62R8db0CUhpRSlGgVS7doFkdAtFTL8Q7LdXV9lChoBmgJaA9DCKKyYU3lgHJAlIaUUpRoFUvCaBZHQLRU1SKFZgZ1fZQoaAZoCWgPQwjAPGTKh+lwQJSGlFKUaBVLwWgWR0C0VNmKyfL+dX2UKGgGaAloD0MI+kZ0zzpab0CUhpRSlGgVS7hoFkdAtFTimtQsPXV9lChoBmgJaA9DCEkrvqEwYnFAlIaUUpRoFUvBaBZHQLRU4sFt8/l1fZQoaAZoCWgPQwhuaMpOfx1zQJSGlFKUaBVLzmgWR0C0VOThcZ+AdX2UKGgGaAloD0MI/vLJiqHickCUhpRSlGgVS8loFkdAtFTrWUbDM3V9lChoBmgJaA9DCNQLPs2JqnNAlIaUUpRoFUvMaBZHQLRU8XzDn/11fZQoaAZoCWgPQwgO2xZldiZyQJSGlFKUaBVL0GgWR0C0VQEvK2a2dX2UKGgGaAloD0MIoWZIFcWnckCUhpRSlGgVS75oFkdAtFUBNGmUGHV9lChoBmgJaA9DCDp2UInru3BAlIaUUpRoFUvQaBZHQLRVCNXYDkl1fZQoaAZoCWgPQwieRIR/EVdzQJSGlFKUaBVL3GgWR0C0VQ0IsyzpdX2UKGgGaAloD0MIcnDpmLOVckCUhpRSlGgVS+FoFkdAtFUN6F/QSnV9lChoBmgJaA9DCAQeGEC4pXBAlIaUUpRoFUvPaBZHQLRVEa+vhZR1fZQoaAZoCWgPQwhEp+fd2PtvQJSGlFKUaBVL5mgWR0C0VRfR/mT1dX2UKGgGaAloD0MIUmUYd4PyckCUhpRSlGgVS7loFkdAtFWbpJPIn3V9lChoBmgJaA9DCCVdM/km3XJAlIaUUpRoFUuqaBZHQLRVodE9dNZ1fZQoaAZoCWgPQwj+ZffkoQ5wQJSGlFKUaBVLtWgWR0C0Vbm1IAfddX2UKGgGaAloD0MIUfnX8koCc0CUhpRSlGgVS7ZoFkdAtFW9XNke63V9lChoBmgJaA9DCLgFS3XBBXBAlIaUUpRoFUu5aBZHQLRVvzk6tDF1fZQoaAZoCWgPQwjiytk74xRxQJSGlFKUaBVL0mgWR0C0VcsQI2OydX2UKGgGaAloD0MIFviKbr00dECUhpRSlGgVS9loFkdAtFXb6YVqOHV9lChoBmgJaA9DCIFCPX1EP3JAlIaUUpRoFUu0aBZHQLRV5/9YOlR1fZQoaAZoCWgPQwgWTz3SoHNwQJSGlFKUaBVL0WgWR0C0Ve2UB4lhdX2UKGgGaAloD0MIbmsLz8uIcECUhpRSlGgVS9poFkdAtFXx3pwCKnV9lChoBmgJaA9DCNBDbRtGm3JAlIaUUpRoFUu8aBZHQLRV8wcYIjZ1fZQoaAZoCWgPQwjoSgSqfzRxQJSGlFKUaBVLvWgWR0C0VfjMibDudX2UKGgGaAloD0MIIenTKvqjc0CUhpRSlGgVS9doFkdAtFYGmzjWCnV9lChoBmgJaA9DCDkJpS9EOHJAlIaUUpRoFUvaaBZHQLRWCj8k2P11fZQoaAZoCWgPQwhI+N7fYE9xQJSGlFKUaBVL1mgWR0C0Vg1yFPBSdX2UKGgGaAloD0MITntKzon5cECUhpRSlGgVS91oFkdAtFYl/oaDPHV9lChoBmgJaA9DCPAZidCIEHNAlIaUUpRoFUvCaBZHQLRWkuGKyfN1fZQoaAZoCWgPQwh5lEp4wohyQJSGlFKUaBVLyGgWR0C0VpUleF+NdX2UKGgGaAloD0MIn8vUJHgzcECUhpRSlGgVS8poFkdAtFa2vA44qHV9lChoBmgJaA9DCN/hdmjYz3JAlIaUUpRoFUvRaBZHQLRWw0k4WDZ1fZQoaAZoCWgPQwhQOLu1TIBzQJSGlFKUaBVLvWgWR0C0VskrPMSsdX2UKGgGaAloD0MI/I7hsV+ackCUhpRSlGgVS9VoFkdAtFbKfRNRFnV9lChoBmgJaA9DCBIUP8ZccnFAlIaUUpRoFUvcaBZHQLRW3teD3/R1fZQoaAZoCWgPQwjP2Jds/DZxQJSGlFKUaBVLwGgWR0C0Vuol6Z6VdX2UKGgGaAloD0MI8Wd4s8bCcUCUhpRSlGgVS7JoFkdAtFbq42CNCXV9lChoBmgJaA9DCLhWe9gLNXFAlIaUUpRoFUvHaBZHQLRW7n3+MqB1fZQoaAZoCWgPQwjFxydkZ/VyQJSGlFKUaBVLzWgWR0C0VvBbSqlxdX2UKGgGaAloD0MIgGH5863HckCUhpRSlGgVS9doFkdAtFcAB7u2JHV9lChoBmgJaA9DCP1OkxnvwXJAlIaUUpRoFUvHaBZHQLRXARVp9JB1fZQoaAZoCWgPQwjpmzQNCtJvQJSGlFKUaBVLx2gWR0C0VweLzf78dX2UKGgGaAloD0MIGVdcHJWbckCUhpRSlGgVS/NoFkdAtFcWTlkpZ3V9lChoBmgJaA9DCDS+Ly6VoHFAlIaUUpRoFUvQaBZHQLRXKSDRMOB1fZQoaAZoCWgPQwiMTSuFwNBxQJSGlFKUaBVLvGgWR0C0V3rORkmQdX2UKGgGaAloD0MI/12fOeshdECUhpRSlGgVS8poFkdAtFePX4CZGHV9lChoBmgJaA9DCOj3/ZsX+05AlIaUUpRoFUuCaBZHQLRXm4TbnHN1fZQoaAZoCWgPQwhvumWHOCVwQJSGlFKUaBVLvmgWR0C0V56ab4JvdX2UKGgGaAloD0MIF2TL8rVzc0CUhpRSlGgVS7RoFkdAtFeeZOSGJ3V9lChoBmgJaA9DCAOWXMXi2HFAlIaUUpRoFUvJaBZHQLRXvpR4yGl1fZQoaAZoCWgPQwi3YRQEjy5yQJSGlFKUaBVLumgWR0C0V8AaBI4EdX2UKGgGaAloD0MIxr/PuDAackCUhpRSlGgVS71oFkdAtFfRbaAWi3V9lChoBmgJaA9DCLbWFwltWW9AlIaUUpRoFUveaBZHQLRX11TisGR1fZQoaAZoCWgPQwiIEFfO3oBxQJSGlFKUaBVLxGgWR0C0V9x4yGi6dX2UKGgGaAloD0MIwa27eSoGcECUhpRSlGgVS7poFkdAtFfhudf9gnV9lChoBmgJaA9DCI49ey6TMXFAlIaUUpRoFUvQaBZHQLRX5hbnoxJ1fZQoaAZoCWgPQwhp5V5g1pFwQJSGlFKUaBVL1GgWR0C0V+qIznA7dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1250,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
lunarLanderSimple2Thousand/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fce3b527dc5027cf0a0f2625eaaacc887f6fc9e087c6fd2dd68805af857a8120
3
+ size 87929
lunarLanderSimple2Thousand/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f6089b1951bdcf75e4e9a0429edfa035dac1083b289d846743104450cb91f80
3
+ size 43201
lunarLanderSimple2Thousand/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunarLanderSimple2Thousand/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 281.0013909031712, "std_reward": 14.970057100310775, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-19T19:39:44.688746"}
 
1
+ {"mean_reward": 287.2072845970215, "std_reward": 25.48408912337809, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-19T20:02:58.861420"}