coyotespike commited on
Commit
42059f1
1 Parent(s): 05e4b77

Test smaller steps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 235.21 +/- 18.51
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -915.62 +/- 492.61
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3aa80e7430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3aa80e74c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3aa80e7550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3aa80e75e0>", "_build": "<function ActorCriticPolicy._build at 0x7f3aa80e7670>", "forward": "<function ActorCriticPolicy.forward at 0x7f3aa80e7700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3aa80e7790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3aa80e7820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3aa80e78b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3aa80e7940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3aa80e79d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3aa80e8090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671393311743840399, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDs2r0M0LI+sZqmPX9gJb6fsZK84HUsPQAAAAAAAAAAAP2YPWFqgrwmeo27L15cPaERyr2Ht5c8AACAPwAAgD9aJt89Moc8PllzML7N/Wq+VG28u6nOvzwAAAAAAAAAADpiOr6vyHc/a6M+vU0Dj75PQP695mQ2PQAAAAAAAAAAwA+LvVJASz9+vwi8MemNvkcmm73Izty8AAAAAAAAAABghAc+sPOvPo40FL57tvO9tzCVu2Xj6rwAAAAAAAAAAACC/jxu56Q/0xNRPRUdl74agj46muQjOAAAAAAAAAAAM12KPDYpHLw2qRO7ppmNPC1dh71IR2s9AACAPwAAgD+aje+7UryNu2aL8Ls6eZk8hMnwuzApcrcAAIA/AACAP+YiMz179ou6FvsGtN5ROa3yEDq6kgGvMwAAgD8AAIA/Zp2+vGwE6DxLDJI98qITvis+Jz25rjO9AAAAAAAAAADmmO29grmmP6gdL78u+66+MnxivZq0gL4AAAAAAAAAACZl8j1eRz4/s7fYvAEGi76ROWC7pv2lPAAAAAAAAAAAAJN5PRiXED9HHRS3DVlTvhJHAT2CGDG9AAAAAAAAAACtYgm+eikNP24X6j35PZW+os41vC6fSD0AAAAAAAAAADUklr6wGog/8iOXvveatb5mrqW+RKgEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3GW/7jQHcECUhpRSlIwBbJRNYwGMAXSUR0CQJhgxJul5dX2UKGgGaAloD0MI5QrvclFNckCUhpRSlGgVTVwBaBZHQJAoKfAbhm51fZQoaAZoCWgPQwg4MSQnky1xQJSGlFKUaBVNQgFoFkdAkCgoUrTYunV9lChoBmgJaA9DCNlAutg0oHBAlIaUUpRoFU1KAWgWR0CQKPPWxyGSdX2UKGgGaAloD0MIMJxrmCHQcECUhpRSlGgVTT8BaBZHQJA7+HFglWx1fZQoaAZoCWgPQwg10eejDDVwQJSGlFKUaBVNRgFoFkdAkDwTc6/7BXV9lChoBmgJaA9DCPgzvFkDLHFAlIaUUpRoFU1jAWgWR0CQPD8L8aXKdX2UKGgGaAloD0MIDOavkDm5cECUhpRSlGgVTSYBaBZHQJA8rcmBvrJ1fZQoaAZoCWgPQwg1QdR9AOxvQJSGlFKUaBVNUAFoFkdAkD296X0GvHV9lChoBmgJaA9DCMh9q3UiMHBAlIaUUpRoFU10AWgWR0CQPcaEzwc6dX2UKGgGaAloD0MIoDU//tJfckCUhpRSlGgVTVgBaBZHQJA/3ILgGbF1fZQoaAZoCWgPQwi5x9KHLh5MQJSGlFKUaBVNCQFoFkdAkEBDkp7TlXV9lChoBmgJaA9DCIkoJm/Ak3JAlIaUUpRoFU0kAWgWR0CQQMPf8/D+dX2UKGgGaAloD0MIvK5fsJtDcECUhpRSlGgVTU0BaBZHQJBA/vw3HaN1fZQoaAZoCWgPQwhQGmoUUnpyQJSGlFKUaBVNdAFoFkdAkEFb2pQ1rXV9lChoBmgJaA9DCCeDo+TV5XFAlIaUUpRoFU1LAWgWR0CQQafiPyTZdX2UKGgGaAloD0MIyOvBpHhEcECUhpRSlGgVTSgBaBZHQJBFpNWU8mt1fZQoaAZoCWgPQwi77q1IzIByQJSGlFKUaBVNigFoFkdAkEWlpsXSB3V9lChoBmgJaA9DCN/8holGg3FAlIaUUpRoFU1iAWgWR0CQRoTBInSfdX2UKGgGaAloD0MIhLuzdtsRcECUhpRSlGgVTXIBaBZHQJBHIhib2Dh1fZQoaAZoCWgPQwirlQm/1LFrQJSGlFKUaBVNVQFoFkdAkEc+SwGGEnV9lChoBmgJaA9DCGRz1TwHCXJAlIaUUpRoFU1oAWgWR0CQR4c3EQ5FdX2UKGgGaAloD0MIhKCjVa08bUCUhpRSlGgVTS8BaBZHQJBH7wqiGnJ1fZQoaAZoCWgPQwiSIjKsYthuQJSGlFKUaBVNawFoFkdAkEjDqfOD8XV9lChoBmgJaA9DCCZXsfjNnW9AlIaUUpRoFU2LAWgWR0CQSWUBGQS0dX2UKGgGaAloD0MI9fV8zTIXcUCUhpRSlGgVTWkBaBZHQJBJ/+wTufF1fZQoaAZoCWgPQwh3vMlvUTNsQJSGlFKUaBVNQAFoFkdAkErx11W8y3V9lChoBmgJaA9DCKwA321ekG5AlIaUUpRoFU1cAWgWR0CQTGtrKvFFdX2UKGgGaAloD0MIAp60cNkicECUhpRSlGgVTUEBaBZHQJBMpm8M/hV1fZQoaAZoCWgPQwiB6bRuw89wQJSGlFKUaBVNUAFoFkdAkEzHjlxOtXV9lChoBmgJaA9DCD547dJGYnBAlIaUUpRoFU1NAWgWR0CQTVPeYUnHdX2UKGgGaAloD0MIaydKQiJdbUCUhpRSlGgVTYgBaBZHQJBORUEPlMh1fZQoaAZoCWgPQwjlfRzNEa9xQJSGlFKUaBVNPAFoFkdAkFCEq6OHWXV9lChoBmgJaA9DCDhKXp2jEnBAlIaUUpRoFU1AAWgWR0CQUK+M6zVudX2UKGgGaAloD0MI7s1vmGgSRECUhpRSlGgVTQUBaBZHQJBR191EE1V1fZQoaAZoCWgPQwjXM4RjluJsQJSGlFKUaBVNSwFoFkdAkFLF72L5ynV9lChoBmgJaA9DCAD+KVUiVnBAlIaUUpRoFU1UAWgWR0CQUwBT4tYkdX2UKGgGaAloD0MIUUtzKwRqbkCUhpRSlGgVTWQBaBZHQJBS/5tWMjx1fZQoaAZoCWgPQwgpX9BCQoNwQJSGlFKUaBVNVgFoFkdAkFPQ5/9YOnV9lChoBmgJaA9DCLudfeUBInFAlIaUUpRoFU03AWgWR0CQVMDhtLtedX2UKGgGaAloD0MIxlBOtKvEbUCUhpRSlGgVTVIBaBZHQJBVFndweeZ1fZQoaAZoCWgPQwgiqBq9mihxQJSGlFKUaBVNRwFoFkdAkFYyExqO93V9lChoBmgJaA9DCAJHAg02FnBAlIaUUpRoFU1FAWgWR0CQV3W1twaSdX2UKGgGaAloD0MI9l/nps2GcUCUhpRSlGgVTUUBaBZHQJBXzT/hl191fZQoaAZoCWgPQwieX5Sg/+ZxQJSGlFKUaBVNSwFoFkdAkFfha9sabXV9lChoBmgJaA9DCF7XL9hNCXBAlIaUUpRoFU1dAWgWR0CQWTXWOIZZdX2UKGgGaAloD0MIPL1SliG4b0CUhpRSlGgVTVgBaBZHQJBaHS6UaAF1fZQoaAZoCWgPQwiVu8/xUShxQJSGlFKUaBVNTAJoFkdAkFvECaJAMXV9lChoBmgJaA9DCPuSjQfb7G1AlIaUUpRoFU1OAWgWR0CQXCmaH9FXdX2UKGgGaAloD0MI8MNBQlQdckCUhpRSlGgVTVUBaBZHQJBcjgWJrL11fZQoaAZoCWgPQwiJYvIGGAprQJSGlFKUaBVNOwFoFkdAkFyoy9EkSnV9lChoBmgJaA9DCObKoNqgWHBAlIaUUpRoFU05AWgWR0CQXZo0hvBKdX2UKGgGaAloD0MIUcB2MOLFbkCUhpRSlGgVTUABaBZHQJBdo6Kcd5p1fZQoaAZoCWgPQwi5bd+j/kFyQJSGlFKUaBVNXQFoFkdAkHGw9/z8QHV9lChoBmgJaA9DCGd79IY7x3FAlIaUUpRoFU1NAWgWR0CQcg+tr9EUdX2UKGgGaAloD0MI81fIXJkycECUhpRSlGgVTTsBaBZHQJByZeJHiFV1fZQoaAZoCWgPQwiySumZ3vxuQJSGlFKUaBVNTAFoFkdAkHMrFn7HhnV9lChoBmgJaA9DCM9r7BJVUW9AlIaUUpRoFU1WAWgWR0CQdIVyWAwxdX2UKGgGaAloD0MI9MDHYEVia0CUhpRSlGgVTTcBaBZHQJB1KEoOQQt1fZQoaAZoCWgPQwj27SQifL5wQJSGlFKUaBVNVQFoFkdAkHYPU4JeFHV9lChoBmgJaA9DCItx/iYUvXBAlIaUUpRoFU14AWgWR0CQduUUfxMGdX2UKGgGaAloD0MIP1dbsX9ecUCUhpRSlGgVTU0BaBZHQJB3L6k69011fZQoaAZoCWgPQwiMoDGTKNxvQJSGlFKUaBVNcAFoFkdAkHlO4PPLPnV9lChoBmgJaA9DCO1I9Z2ffHJAlIaUUpRoFU09AWgWR0CQeY+kP+XJdX2UKGgGaAloD0MIlC79S9JscECUhpRSlGgVTUsBaBZHQJB6dFb3XZp1fZQoaAZoCWgPQwhDWfj62nRuQJSGlFKUaBVNawFoFkdAkHrKzzErG3V9lChoBmgJaA9DCKeU10qoz3FAlIaUUpRoFU1oAWgWR0CQe5tz0Yj0dX2UKGgGaAloD0MI1bK1voiLcECUhpRSlGgVTTABaBZHQJB76s90Rvp1fZQoaAZoCWgPQwiAtWrXRFtyQJSGlFKUaBVNIQFoFkdAkHwgcDKYA3V9lChoBmgJaA9DCIKsp1ZfWG9AlIaUUpRoFU1zAWgWR0CQfQ/o7muDdX2UKGgGaAloD0MIqoB7nn8CcECUhpRSlGgVTXgBaBZHQJB9MmCyyD91fZQoaAZoCWgPQwhQqKePQLBtQJSGlFKUaBVNggFoFkdAkH8NqHoHLXV9lChoBmgJaA9DCOSghJn2iHBAlIaUUpRoFU2EAWgWR0CQgGYwZflZdX2UKGgGaAloD0MI+RBUjV5xckCUhpRSlGgVTVoBaBZHQJCBC0QbuMN1fZQoaAZoCWgPQwinsijs4uFwQJSGlFKUaBVNcwFoFkdAkIE5aRp1zXV9lChoBmgJaA9DCENwXMZN9nBAlIaUUpRoFU1OAWgWR0CQgYVGTcIrdX2UKGgGaAloD0MI4dHGEevpb0CUhpRSlGgVTUMBaBZHQJCCJg6U7jl1fZQoaAZoCWgPQwjkSGdg5NRwQJSGlFKUaBVNhwFoFkdAkIPn7pFCs3V9lChoBmgJaA9DCJ6zBYRWNXJAlIaUUpRoFU1LAWgWR0CQhDsS00FbdX2UKGgGaAloD0MIxvgwe9mRcUCUhpRSlGgVTTQBaBZHQJCE2bVjI7x1fZQoaAZoCWgPQwgZcmw9w0ttQJSGlFKUaBVNQQFoFkdAkIT0Xxe9jHV9lChoBmgJaA9DCLDllett5nBAlIaUUpRoFU1EAWgWR0CQhop/gBLgdX2UKGgGaAloD0MI2dE41K8IckCUhpRSlGgVTVwBaBZHQJCHLsfJV811fZQoaAZoCWgPQwiO5sjKLyJwQJSGlFKUaBVNtgFoFkdAkIgNcW0qpnV9lChoBmgJaA9DCKGePgL/yWxAlIaUUpRoFU10AWgWR0CQiS41xbSrdX2UKGgGaAloD0MItmeWBChVcECUhpRSlGgVTagBaBZHQJCJnE2pAD91fZQoaAZoCWgPQwg2donqLcFtQJSGlFKUaBVNigFoFkdAkIobuUliSnV9lChoBmgJaA9DCAQEc/T42W5AlIaUUpRoFU1XAWgWR0CQikZid8RddX2UKGgGaAloD0MIWp9yTBYBRUCUhpRSlGgVTRwBaBZHQJCKdDNQj2V1fZQoaAZoCWgPQwi1+uqqAAVzQJSGlFKUaBVNXgFoFkdAkIxi5uqFRHV9lChoBmgJaA9DCOj4aHFGfXJAlIaUUpRoFU0/AWgWR0CQjKtW+49YdX2UKGgGaAloD0MIELHBwsmZbkCUhpRSlGgVTVgBaBZHQJCMvHR1HON1fZQoaAZoCWgPQwheKjbmdWttQJSGlFKUaBVNtQFoFkdAkI6KoqCpWHV9lChoBmgJaA9DCMS12sNe1W9AlIaUUpRoFU0qAWgWR0CQjtaAFxGUdX2UKGgGaAloD0MI2UElrmPpa0CUhpRSlGgVTXEBaBZHQJCQTCDVYp51fZQoaAZoCWgPQwinAu55PopxQJSGlFKUaBVNUgFoFkdAkJBXXRPXTXV9lChoBmgJaA9DCFDEIoadWWxAlIaUUpRoFU2DAWgWR0CQkUvHLidbdX2UKGgGaAloD0MIpgux+mO5cUCUhpRSlGgVTTABaBZHQJCRfJZGKAJ1fZQoaAZoCWgPQwjzHJHvEndxQJSGlFKUaBVNUQFoFkdAkJH0d7v5QHV9lChoBmgJaA9DCB2taklHEXJAlIaUUpRoFU1DAWgWR0CQku+RYA80dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb3d8123c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb3d8123ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb3d8123d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb3d8123dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fb3d8123e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fb3d8123ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb3d8123f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb3d812a040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb3d812a0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb3d812a160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb3d812a1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb3d8127060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671472327261802837, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYNEb44XpU+pfl2Ptthrb8MKI6/He5cvgAAAAAAAAAADa8rP7grFz8hdYU/QFWcv6Vmc7/Qxnq+AAAAAAAAAACODw0/XqydP2kTjj+V+fO+IkS/vslCvD0AAAAAAAAAAEMaIr+qxAg+ZgKrv6dir7/NHYM/EubePgAAAAAAAAAApiy5PkyrjT+mC0E/r+U5v0QlLb/6z6q+AAAAAAAAAABmDky8vSCnP/FOBjx35fi+gLz3vUxpA74AAAAAAAAAALMIx70Uh6w/YQCzvqX20749Du0+c/CxPgAAAAAAAAAAJsN3PvCUiT6y4+k+ugimv78cj76Wk4E9AAAAAAAAAAATZCg+wbUiP7Z25z68bIu/Coinvt//vL0AAAAAAAAAAEDgwz7/770/tfRZP2P4qb4l2Z29lqsPvAAAAAAAAAAATcpNP8u9/T5Szec/GW6FvyuKnr9bjuG+AAAAAAAAAAAQA1W/uRpSPmYs1L/UPLC/UhGcP8aw+z4AAAAAAAAAAHPd2r2VRbY/JPiVvtE/fb4Qf7E98DszPQAAAAAAAAAAWmtBPpjBmD8dNvo+pS8Jv58Kkr7yMhy+AAAAAAAAAADaWIo9Hz7CP79AzD5D+/Y9cYIkvvLJI74AAAAAAAAAADN99LyYgKs/eKEEv8O1C79bHs88yL3ePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -2.2768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID5ccd8p4e8CUhpRSlIwBbJRLa4wBdJRHQDtJ9nbqQil1fZQoaAZoCWgPQwiUSnhCL/55wJSGlFKUaBVLYGgWR0A7WtQ9A5aNdX2UKGgGaAloD0MIPkLNkCraQ8CUhpRSlGgVS2JoFkdAO11RYRujynV9lChoBmgJaA9DCPTDCOFRAGrAlIaUUpRoFUtEaBZHQDteu1WsA/91fZQoaAZoCWgPQwi5qBYRRWJhwJSGlFKUaBVLV2gWR0A7Xr4nF5v+dX2UKGgGaAloD0MIwTkjSnsyXMCUhpRSlGgVS0xoFkdAO1/PTodMkHV9lChoBmgJaA9DCN+I7lnXhmHAlIaUUpRoFUtGaBZHQDtvd43WFvh1fZQoaAZoCWgPQwhStd0E37pUwJSGlFKUaBVLU2gWR0A7cYq5LAYYdX2UKGgGaAloD0MITG4UWWtdXMCUhpRSlGgVS1FoFkdAO3MbrC3w1HV9lChoBmgJaA9DCFgfD31332TAlIaUUpRoFUtwaBZHQDt6mIj4YaZ1fZQoaAZoCWgPQwhd+MH5VHRpwJSGlFKUaBVLUGgWR0A7i/pdKNADdX2UKGgGaAloD0MIvJLkuT6JZ8CUhpRSlGgVS0xoFkdAO5uNHYpUgnV9lChoBmgJaA9DCEaWzLH8D3/AlIaUUpRoFUtlaBZHQDubo1UEPlN1fZQoaAZoCWgPQwiXAPxTqmhPwJSGlFKUaBVLemgWR0A7nSZjQRf4dX2UKGgGaAloD0MIgv5CjxgTU8CUhpRSlGgVS4doFkdAO5/NVzZHu3V9lChoBmgJaA9DCJHvUuqSZ1nAlIaUUpRoFUtTaBZHQDumqgh8pkR1fZQoaAZoCWgPQwiif4KLFddewJSGlFKUaBVLcGgWR0A7qRGtp22YdX2UKGgGaAloD0MIS8lyEspwZMCUhpRSlGgVS1loFkdAO60D+zdDY3V9lChoBmgJaA9DCEiMnlvotVzAlIaUUpRoFUtcaBZHQDuvu2JBPbh1fZQoaAZoCWgPQwhangd3Z6pVwJSGlFKUaBVLR2gWR0A7sEytV7x/dX2UKGgGaAloD0MIMXxETAm2ZsCUhpRSlGgVS35oFkdAO7FDjR2KVXV9lChoBmgJaA9DCKMHPgYr/XDAlIaUUpRoFUuIaBZHQDu0Qg9vCMx1fZQoaAZoCWgPQwiGN2vwvohhwJSGlFKUaBVLPmgWR0A7w0XP7el9dX2UKGgGaAloD0MILEme6/vQFsCUhpRSlGgVS1JoFkdAO8MaGYa5w3V9lChoBmgJaA9DCFitTPiltk3AlIaUUpRoFUt2aBZHQDvGO+7Dl5p1fZQoaAZoCWgPQwhr8pTVdPtowJSGlFKUaBVLeGgWR0A73IAwPAfudX2UKGgGaAloD0MIoG0164wsUsCUhpRSlGgVS0BoFkdAO+CHZbpu/HV9lChoBmgJaA9DCCJQ/YNIf1bAlIaUUpRoFUs9aBZHQDviFdszl911fZQoaAZoCWgPQwjAWrVrQgFnwJSGlFKUaBVLTGgWR0A74Xdj5KvndX2UKGgGaAloD0MI1qiHaDTKcsCUhpRSlGgVS31oFkdAO+Ky0KJEY3V9lChoBmgJaA9DCNjw9ErZpWLAlIaUUpRoFUs/aBZHQDvmwr1/UfB1fZQoaAZoCWgPQwjM64hD9tp2wJSGlFKUaBVLV2gWR0A76Zl4C6pYdX2UKGgGaAloD0MIMq64OKo1YsCUhpRSlGgVS1ZoFkdAO+uFUQ04znV9lChoBmgJaA9DCIuKOJ3km23AlIaUUpRoFUtUaBZHQDv4VN5+pfh1fZQoaAZoCWgPQwgRx7q4jfJOwJSGlFKUaBVLbWgWR0A7+2zOX3QEdX2UKGgGaAloD0MIAkuuYnFUacCUhpRSlGgVS1poFkdAPAD5O8Cgb3V9lChoBmgJaA9DCJJ1OLpKgHPAlIaUUpRoFUtjaBZHQDwEPbwjMV11fZQoaAZoCWgPQwjjwoGQLBRewJSGlFKUaBVLbmgWR0A8BQuVX3g2dX2UKGgGaAloD0MIYOemzbivdsCUhpRSlGgVS15oFkdAPBRIBikO7XV9lChoBmgJaA9DCOnwEMYPcnHAlIaUUpRoFUtIaBZHQDwZQcghbGF1fZQoaAZoCWgPQwgOiBBXjqhxwJSGlFKUaBVLYmgWR0A8GoPTXrdFdX2UKGgGaAloD0MIdt1bkRivYMCUhpRSlGgVS21oFkdAPCEyYXwb2nV9lChoBmgJaA9DCMdnsn+eN2TAlIaUUpRoFUtUaBZHQDwoVbiZOSJ1fZQoaAZoCWgPQwjyDBr6ZwV0wJSGlFKUaBVLVGgWR0A8KP4VRDTjdX2UKGgGaAloD0MIHk/LD1wLasCUhpRSlGgVS01oFkdAPCv7zkIX03V9lChoBmgJaA9DCH46HjNQmFfAlIaUUpRoFUs8aBZHQDwzLRrrPdF1fZQoaAZoCWgPQwiCHf8FgnhcwJSGlFKUaBVLY2gWR0A8NByjpLVXdX2UKGgGaAloD0MIRxyygXQdWMCUhpRSlGgVS0VoFkdAPDW0VrRBvHV9lChoBmgJaA9DCBoziXrBGFXAlIaUUpRoFUtBaBZHQDw7BYV6/qR1fZQoaAZoCWgPQwjD1mzlJQFAwJSGlFKUaBVLbWgWR0A8RC+10DEFdX2UKGgGaAloD0MIK08g7BQIVMCUhpRSlGgVS1toFkdAPETesPrfL3V9lChoBmgJaA9DCPoOfuJALnzAlIaUUpRoFUt7aBZHQDxM2pAD7qJ1fZQoaAZoCWgPQwh55XrbzP1lwJSGlFKUaBVLh2gWR0A8UQP7N0NjdX2UKGgGaAloD0MI5/1/nDBTVsCUhpRSlGgVS1FoFkdAPF987ZFoc3V9lChoBmgJaA9DCEshkEscBl3AlIaUUpRoFUtZaBZHQDxmzlcQiA51fZQoaAZoCWgPQwj/d0SFasNuwJSGlFKUaBVLX2gWR0A8ZuivgWJrdX2UKGgGaAloD0MIaafmcoPEZMCUhpRSlGgVSzxoFkdAPGj3h4t6HHV9lChoBmgJaA9DCJI+raI/xWzAlIaUUpRoFUtMaBZHQDxr2ys0YTF1fZQoaAZoCWgPQwguWRXhpm9rwJSGlFKUaBVLV2gWR0A8bVnEl3QldX2UKGgGaAloD0MIQYNNnceBbcCUhpRSlGgVS1VoFkdAPHLq+rU9ZHV9lChoBmgJaA9DCL72zJKAdGnAlIaUUpRoFUuAaBZHQDxy9bor4Fl1fZQoaAZoCWgPQwiRf2YQH2JqwJSGlFKUaBVLVWgWR0A8djLjghr4dX2UKGgGaAloD0MIHXIz3IBcWsCUhpRSlGgVS1FoFkdAPHwmVqveQHV9lChoBmgJaA9DCOXuc3y0M2TAlIaUUpRoFUtEaBZHQDyAL7XQMQV1fZQoaAZoCWgPQwiwVBfwMipewJSGlFKUaBVLWWgWR0A8gSpBHCoCdX2UKGgGaAloD0MI0XZM3ZWOXMCUhpRSlGgVS1loFkdAPIehf0Eov3V9lChoBmgJaA9DCGjmyTUFnl7AlIaUUpRoFUtHaBZHQDyOfXf642F1fZQoaAZoCWgPQwhiga/olh54wJSGlFKUaBVLYGgWR0A8lrgwXZXddX2UKGgGaAloD0MIZmoSvKFqZ8CUhpRSlGgVS2FoFkdAPKBujynUD3V9lChoBmgJaA9DCNwPeGAA21PAlIaUUpRoFUtAaBZHQDyojopx3mp1fZQoaAZoCWgPQwh9rrZif2FVwJSGlFKUaBVLSmgWR0A8q6ClJpWWdX2UKGgGaAloD0MISl0yjhHQcMCUhpRSlGgVS0ZoFkdAPK4rz5GjK3V9lChoBmgJaA9DCBO2n4zxGV/AlIaUUpRoFUtVaBZHQDyvHo5ggHN1fZQoaAZoCWgPQwi8XMR3Yj1iwJSGlFKUaBVLZWgWR0A8vnwG4ZuRdX2UKGgGaAloD0MIhBH7BNDCY8CUhpRSlGgVS21oFkdAPL3uJDVpbnV9lChoBmgJaA9DCOULWkjAg1fAlIaUUpRoFUtRaBZHQDzB+kP+XJJ1fZQoaAZoCWgPQwjeOv922R9iwJSGlFKUaBVLUmgWR0A8xvBJqZc+dX2UKGgGaAloD0MIoKcBgyS7asCUhpRSlGgVS3NoFkdAPMirksBhhHV9lChoBmgJaA9DCLK5ap5jT37AlIaUUpRoFUtTaBZHQDzJHEuQIUt1fZQoaAZoCWgPQwjueJPfIs5swJSGlFKUaBVLbmgWR0A805O8CgbqdX2UKGgGaAloD0MItMwiFFs0XcCUhpRSlGgVS11oFkdAPNg3YL9deXV9lChoBmgJaA9DCNZz0vvGfXDAlIaUUpRoFUuDaBZHQDza1/lQuVZ1fZQoaAZoCWgPQwgvw3+6gfd2wJSGlFKUaBVLaGgWR0A86ELH+6y0dX2UKGgGaAloD0MImUuqtpvDWcCUhpRSlGgVS1ZoFkdAPPQ3gk1MunV9lChoBmgJaA9DCOjAcoSM92/AlIaUUpRoFUtEaBZHQDz30aqCHyp1fZQoaAZoCWgPQwguAI3Sped4wJSGlFKUaBVLcWgWR0A8+WZJCjUNdX2UKGgGaAloD0MIO1W+Z6TcasCUhpRSlGgVS2hoFkdAPPtKEnLJS3V9lChoBmgJaA9DCOs4fqi0KnnAlIaUUpRoFUteaBZHQDz+6kIomXx1fZQoaAZoCWgPQwisyr4rgpliwJSGlFKUaBVLRWgWR0A9A/Efkmx/dX2UKGgGaAloD0MIwLSoT3L+W8CUhpRSlGgVS3BoFkdAPQkTg2qDLHV9lChoBmgJaA9DCMXm49rQI2PAlIaUUpRoFUtTaBZHQD0JJ/XoTwl1fZQoaAZoCWgPQwgyjpHsES49wJSGlFKUaBVLamgWR0A9Chdt2s7udX2UKGgGaAloD0MIvtu8cRKsdcCUhpRSlGgVS1toFkdAPRhJAdGRWHV9lChoBmgJaA9DCAa8zLBRcVPAlIaUUpRoFUtHaBZHQD0bZCfHxSZ1fZQoaAZoCWgPQwi858ByxOh7wJSGlFKUaBVLa2gWR0A9HMewLVnVdX2UKGgGaAloD0MILgJjfQM5asCUhpRSlGgVS2JoFkdAPR+oUBXCCXV9lChoBmgJaA9DCFfsL7snfytAlIaUUpRoFUtQaBZHQD0gqSX+l0p1fZQoaAZoCWgPQwg9uDtrtwVawJSGlFKUaBVLQGgWR0A9I4lyBCladX2UKGgGaAloD0MIX5ULlT+QfsCUhpRSlGgVS29oFkdAPTSVbA1vVHV9lChoBmgJaA9DCI+LahFRjkzAlIaUUpRoFUtCaBZHQD091PnB+F11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de9c759a90f4d9c6bc85a82508400841148cc85510178c311157ef9b9a904ced
3
+ size 147065
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb3d8123c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb3d8123ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb3d8123d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb3d8123dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb3d8123e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb3d8123ee0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb3d8123f70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb3d812a040>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb3d812a0d0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb3d812a160>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb3d812a1f0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb3d8127060>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 5000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671472327261802837,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACYNEb44XpU+pfl2Ptthrb8MKI6/He5cvgAAAAAAAAAADa8rP7grFz8hdYU/QFWcv6Vmc7/Qxnq+AAAAAAAAAACODw0/XqydP2kTjj+V+fO+IkS/vslCvD0AAAAAAAAAAEMaIr+qxAg+ZgKrv6dir7/NHYM/EubePgAAAAAAAAAApiy5PkyrjT+mC0E/r+U5v0QlLb/6z6q+AAAAAAAAAABmDky8vSCnP/FOBjx35fi+gLz3vUxpA74AAAAAAAAAALMIx70Uh6w/YQCzvqX20749Du0+c/CxPgAAAAAAAAAAJsN3PvCUiT6y4+k+ugimv78cj76Wk4E9AAAAAAAAAAATZCg+wbUiP7Z25z68bIu/Coinvt//vL0AAAAAAAAAAEDgwz7/770/tfRZP2P4qb4l2Z29lqsPvAAAAAAAAAAATcpNP8u9/T5Szec/GW6FvyuKnr9bjuG+AAAAAAAAAAAQA1W/uRpSPmYs1L/UPLC/UhGcP8aw+z4AAAAAAAAAAHPd2r2VRbY/JPiVvtE/fb4Qf7E98DszPQAAAAAAAAAAWmtBPpjBmD8dNvo+pS8Jv58Kkr7yMhy+AAAAAAAAAADaWIo9Hz7CP79AzD5D+/Y9cYIkvvLJI74AAAAAAAAAADN99LyYgKs/eKEEv8O1C79bHs88yL3ePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -2.2768,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID5ccd8p4e8CUhpRSlIwBbJRLa4wBdJRHQDtJ9nbqQil1fZQoaAZoCWgPQwiUSnhCL/55wJSGlFKUaBVLYGgWR0A7WtQ9A5aNdX2UKGgGaAloD0MIPkLNkCraQ8CUhpRSlGgVS2JoFkdAO11RYRujynV9lChoBmgJaA9DCPTDCOFRAGrAlIaUUpRoFUtEaBZHQDteu1WsA/91fZQoaAZoCWgPQwi5qBYRRWJhwJSGlFKUaBVLV2gWR0A7Xr4nF5v+dX2UKGgGaAloD0MIwTkjSnsyXMCUhpRSlGgVS0xoFkdAO1/PTodMkHV9lChoBmgJaA9DCN+I7lnXhmHAlIaUUpRoFUtGaBZHQDtvd43WFvh1fZQoaAZoCWgPQwhStd0E37pUwJSGlFKUaBVLU2gWR0A7cYq5LAYYdX2UKGgGaAloD0MITG4UWWtdXMCUhpRSlGgVS1FoFkdAO3MbrC3w1HV9lChoBmgJaA9DCFgfD31332TAlIaUUpRoFUtwaBZHQDt6mIj4YaZ1fZQoaAZoCWgPQwhd+MH5VHRpwJSGlFKUaBVLUGgWR0A7i/pdKNADdX2UKGgGaAloD0MIvJLkuT6JZ8CUhpRSlGgVS0xoFkdAO5uNHYpUgnV9lChoBmgJaA9DCEaWzLH8D3/AlIaUUpRoFUtlaBZHQDubo1UEPlN1fZQoaAZoCWgPQwiXAPxTqmhPwJSGlFKUaBVLemgWR0A7nSZjQRf4dX2UKGgGaAloD0MIgv5CjxgTU8CUhpRSlGgVS4doFkdAO5/NVzZHu3V9lChoBmgJaA9DCJHvUuqSZ1nAlIaUUpRoFUtTaBZHQDumqgh8pkR1fZQoaAZoCWgPQwiif4KLFddewJSGlFKUaBVLcGgWR0A7qRGtp22YdX2UKGgGaAloD0MIS8lyEspwZMCUhpRSlGgVS1loFkdAO60D+zdDY3V9lChoBmgJaA9DCEiMnlvotVzAlIaUUpRoFUtcaBZHQDuvu2JBPbh1fZQoaAZoCWgPQwhangd3Z6pVwJSGlFKUaBVLR2gWR0A7sEytV7x/dX2UKGgGaAloD0MIMXxETAm2ZsCUhpRSlGgVS35oFkdAO7FDjR2KVXV9lChoBmgJaA9DCKMHPgYr/XDAlIaUUpRoFUuIaBZHQDu0Qg9vCMx1fZQoaAZoCWgPQwiGN2vwvohhwJSGlFKUaBVLPmgWR0A7w0XP7el9dX2UKGgGaAloD0MILEme6/vQFsCUhpRSlGgVS1JoFkdAO8MaGYa5w3V9lChoBmgJaA9DCFitTPiltk3AlIaUUpRoFUt2aBZHQDvGO+7Dl5p1fZQoaAZoCWgPQwhr8pTVdPtowJSGlFKUaBVLeGgWR0A73IAwPAfudX2UKGgGaAloD0MIoG0164wsUsCUhpRSlGgVS0BoFkdAO+CHZbpu/HV9lChoBmgJaA9DCCJQ/YNIf1bAlIaUUpRoFUs9aBZHQDviFdszl911fZQoaAZoCWgPQwjAWrVrQgFnwJSGlFKUaBVLTGgWR0A74Xdj5KvndX2UKGgGaAloD0MI1qiHaDTKcsCUhpRSlGgVS31oFkdAO+Ky0KJEY3V9lChoBmgJaA9DCNjw9ErZpWLAlIaUUpRoFUs/aBZHQDvmwr1/UfB1fZQoaAZoCWgPQwjM64hD9tp2wJSGlFKUaBVLV2gWR0A76Zl4C6pYdX2UKGgGaAloD0MIMq64OKo1YsCUhpRSlGgVS1ZoFkdAO+uFUQ04znV9lChoBmgJaA9DCIuKOJ3km23AlIaUUpRoFUtUaBZHQDv4VN5+pfh1fZQoaAZoCWgPQwgRx7q4jfJOwJSGlFKUaBVLbWgWR0A7+2zOX3QEdX2UKGgGaAloD0MIAkuuYnFUacCUhpRSlGgVS1poFkdAPAD5O8Cgb3V9lChoBmgJaA9DCJJ1OLpKgHPAlIaUUpRoFUtjaBZHQDwEPbwjMV11fZQoaAZoCWgPQwjjwoGQLBRewJSGlFKUaBVLbmgWR0A8BQuVX3g2dX2UKGgGaAloD0MIYOemzbivdsCUhpRSlGgVS15oFkdAPBRIBikO7XV9lChoBmgJaA9DCOnwEMYPcnHAlIaUUpRoFUtIaBZHQDwZQcghbGF1fZQoaAZoCWgPQwgOiBBXjqhxwJSGlFKUaBVLYmgWR0A8GoPTXrdFdX2UKGgGaAloD0MIdt1bkRivYMCUhpRSlGgVS21oFkdAPCEyYXwb2nV9lChoBmgJaA9DCMdnsn+eN2TAlIaUUpRoFUtUaBZHQDwoVbiZOSJ1fZQoaAZoCWgPQwjyDBr6ZwV0wJSGlFKUaBVLVGgWR0A8KP4VRDTjdX2UKGgGaAloD0MIHk/LD1wLasCUhpRSlGgVS01oFkdAPCv7zkIX03V9lChoBmgJaA9DCH46HjNQmFfAlIaUUpRoFUs8aBZHQDwzLRrrPdF1fZQoaAZoCWgPQwiCHf8FgnhcwJSGlFKUaBVLY2gWR0A8NByjpLVXdX2UKGgGaAloD0MIRxyygXQdWMCUhpRSlGgVS0VoFkdAPDW0VrRBvHV9lChoBmgJaA9DCBoziXrBGFXAlIaUUpRoFUtBaBZHQDw7BYV6/qR1fZQoaAZoCWgPQwjD1mzlJQFAwJSGlFKUaBVLbWgWR0A8RC+10DEFdX2UKGgGaAloD0MIK08g7BQIVMCUhpRSlGgVS1toFkdAPETesPrfL3V9lChoBmgJaA9DCPoOfuJALnzAlIaUUpRoFUt7aBZHQDxM2pAD7qJ1fZQoaAZoCWgPQwh55XrbzP1lwJSGlFKUaBVLh2gWR0A8UQP7N0NjdX2UKGgGaAloD0MI5/1/nDBTVsCUhpRSlGgVS1FoFkdAPF987ZFoc3V9lChoBmgJaA9DCEshkEscBl3AlIaUUpRoFUtZaBZHQDxmzlcQiA51fZQoaAZoCWgPQwj/d0SFasNuwJSGlFKUaBVLX2gWR0A8ZuivgWJrdX2UKGgGaAloD0MIaafmcoPEZMCUhpRSlGgVSzxoFkdAPGj3h4t6HHV9lChoBmgJaA9DCJI+raI/xWzAlIaUUpRoFUtMaBZHQDxr2ys0YTF1fZQoaAZoCWgPQwguWRXhpm9rwJSGlFKUaBVLV2gWR0A8bVnEl3QldX2UKGgGaAloD0MIQYNNnceBbcCUhpRSlGgVS1VoFkdAPHLq+rU9ZHV9lChoBmgJaA9DCL72zJKAdGnAlIaUUpRoFUuAaBZHQDxy9bor4Fl1fZQoaAZoCWgPQwiRf2YQH2JqwJSGlFKUaBVLVWgWR0A8djLjghr4dX2UKGgGaAloD0MIHXIz3IBcWsCUhpRSlGgVS1FoFkdAPHwmVqveQHV9lChoBmgJaA9DCOXuc3y0M2TAlIaUUpRoFUtEaBZHQDyAL7XQMQV1fZQoaAZoCWgPQwiwVBfwMipewJSGlFKUaBVLWWgWR0A8gSpBHCoCdX2UKGgGaAloD0MI0XZM3ZWOXMCUhpRSlGgVS1loFkdAPIehf0Eov3V9lChoBmgJaA9DCGjmyTUFnl7AlIaUUpRoFUtHaBZHQDyOfXf642F1fZQoaAZoCWgPQwhiga/olh54wJSGlFKUaBVLYGgWR0A8lrgwXZXddX2UKGgGaAloD0MIZmoSvKFqZ8CUhpRSlGgVS2FoFkdAPKBujynUD3V9lChoBmgJaA9DCNwPeGAA21PAlIaUUpRoFUtAaBZHQDyojopx3mp1fZQoaAZoCWgPQwh9rrZif2FVwJSGlFKUaBVLSmgWR0A8q6ClJpWWdX2UKGgGaAloD0MISl0yjhHQcMCUhpRSlGgVS0ZoFkdAPK4rz5GjK3V9lChoBmgJaA9DCBO2n4zxGV/AlIaUUpRoFUtVaBZHQDyvHo5ggHN1fZQoaAZoCWgPQwi8XMR3Yj1iwJSGlFKUaBVLZWgWR0A8vnwG4ZuRdX2UKGgGaAloD0MIhBH7BNDCY8CUhpRSlGgVS21oFkdAPL3uJDVpbnV9lChoBmgJaA9DCOULWkjAg1fAlIaUUpRoFUtRaBZHQDzB+kP+XJJ1fZQoaAZoCWgPQwjeOv922R9iwJSGlFKUaBVLUmgWR0A8xvBJqZc+dX2UKGgGaAloD0MIoKcBgyS7asCUhpRSlGgVS3NoFkdAPMirksBhhHV9lChoBmgJaA9DCLK5ap5jT37AlIaUUpRoFUtTaBZHQDzJHEuQIUt1fZQoaAZoCWgPQwjueJPfIs5swJSGlFKUaBVLbmgWR0A805O8CgbqdX2UKGgGaAloD0MItMwiFFs0XcCUhpRSlGgVS11oFkdAPNg3YL9deXV9lChoBmgJaA9DCNZz0vvGfXDAlIaUUpRoFUuDaBZHQDza1/lQuVZ1fZQoaAZoCWgPQwgvw3+6gfd2wJSGlFKUaBVLaGgWR0A86ELH+6y0dX2UKGgGaAloD0MImUuqtpvDWcCUhpRSlGgVS1ZoFkdAPPQ3gk1MunV9lChoBmgJaA9DCOjAcoSM92/AlIaUUpRoFUtEaBZHQDz30aqCHyp1fZQoaAZoCWgPQwguAI3Sped4wJSGlFKUaBVLcWgWR0A8+WZJCjUNdX2UKGgGaAloD0MIO1W+Z6TcasCUhpRSlGgVS2hoFkdAPPtKEnLJS3V9lChoBmgJaA9DCOs4fqi0KnnAlIaUUpRoFUteaBZHQDz+6kIomXx1fZQoaAZoCWgPQwisyr4rgpliwJSGlFKUaBVLRWgWR0A9A/Efkmx/dX2UKGgGaAloD0MIwLSoT3L+W8CUhpRSlGgVS3BoFkdAPQkTg2qDLHV9lChoBmgJaA9DCMXm49rQI2PAlIaUUpRoFUtTaBZHQD0JJ/XoTwl1fZQoaAZoCWgPQwgyjpHsES49wJSGlFKUaBVLamgWR0A9Chdt2s7udX2UKGgGaAloD0MIvtu8cRKsdcCUhpRSlGgVS1toFkdAPRhJAdGRWHV9lChoBmgJaA9DCAa8zLBRcVPAlIaUUpRoFUtHaBZHQD0bZCfHxSZ1fZQoaAZoCWgPQwi858ByxOh7wJSGlFKUaBVLa2gWR0A9HMewLVnVdX2UKGgGaAloD0MILgJjfQM5asCUhpRSlGgVS2JoFkdAPR+oUBXCCXV9lChoBmgJaA9DCFfsL7snfytAlIaUUpRoFUtQaBZHQD0gqSX+l0p1fZQoaAZoCWgPQwg9uDtrtwVawJSGlFKUaBVLQGgWR0A9I4lyBCladX2UKGgGaAloD0MIX5ULlT+QfsCUhpRSlGgVS29oFkdAPTSVbA1vVHV9lChoBmgJaA9DCI+LahFRjkzAlIaUUpRoFUtCaBZHQD091PnB+F11ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4732633e075db1ebdd1c9d9f434ce8a5eca106dbc3748b9ccc83a81b4f7fb596
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41da6d02d55f812577f56c23e0fbd52281a5ec920d1ed921c81ed48c915d4895
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 235.21079523193816, "std_reward": 18.50632646458401, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T20:15:08.150582"}
 
1
+ {"mean_reward": -915.6183222525985, "std_reward": 492.61420072023867, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-19T17:54:04.689328"}