coyotespike commited on
Commit
367e38f
1 Parent(s): cf85fbd

Upload PPO lunar lander trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.14 +/- 18.37
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb007d16790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb007d16820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb007d168b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb007d16940>", "_build": "<function ActorCriticPolicy._build at 0x7fb007d169d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb007d16a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb007d16af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb007d16b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb007d16c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb007d16ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb007d16d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb007d14300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671386346433811250, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaOEb7PngS8SDuYu4pyBrrAPVU9TtDfOgAAgD8AAIA/ZhK8PMNJQ7ptcXU71cKCODd4PzpbCxO6AACAPwAAgD9NVNE99ow6uuL4EblAAk221ZlVu5fjKzgAAIA/AAAAAE3n6b2PXhW6goiBPDSakLjMEaQ6Qj97OQAAgD8AAIA/QMy9PrM9ID/2yZi+mvTgva0TkL0QvUa9AAAAAAAAAABzb7q9j64Eurb0mjvCFVw19VEJueYEWzQAAIA/AAAAADMFjz6405s/TUnhPomvpr4T3aw+hhGtPQAAAAAAAAAAzYVhvrb5DD2D4OW6twTROX5hnb4WMD06AACAPwAAgD+ARlM9ejq2P3ovOD8Mkmg61dDJvDtdaDwAAAAAAAAAAE3cAj1cH0e6+zLOOk2PXzbXdH87jW7uuQAAgD8AAIA/AFI2vuo3GT5FHeU9W+8VvmkAu72zA+c9AAAAAAAAAAAa+W6+eStAP+07/D0lXV2+fnYbvo5xFT0AAAAAAAAAAGBEPr5PazQ+3azuu0T0IL68PSE8wE3WvAAAAAAAAAAAZkd7vbj2xLlBwBK7DOaKNg4EgTqTIio6AACAPwAAgD8mj+M9KdgOusMk3LwWdOY7fpzBuqLIbLwAAAAAAACAP/oYBL4kPQo/OvQPPjlXZL4L+qS7OoVIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWg9fJgqIYECUhpRSlIwBbJRN6AOMAXSUR0CI1JlKbrkbdX2UKGgGaAloD0MI4GbxYmGFW0CUhpRSlGgVTegDaBZHQIjcFpKzzEt1fZQoaAZoCWgPQwhCsoAJ3Lq/v5SGlFKUaBVNIAFoFkdAiObfReC04XV9lChoBmgJaA9DCMbctYR84lJAlIaUUpRoFU3oA2gWR0CI7Kl7+kxidX2UKGgGaAloD0MIZePBFrvtYECUhpRSlGgVTegDaBZHQIj4naHsTnJ1fZQoaAZoCWgPQwgvw3+6gd9gQJSGlFKUaBVN6ANoFkdAiP3mplz2e3V9lChoBmgJaA9DCCWWlLvPEF5AlIaUUpRoFU3oA2gWR0CJB11FH8TBdX2UKGgGaAloD0MIx9rf2Z5LYUCUhpRSlGgVTegDaBZHQIkLTu6VdHF1fZQoaAZoCWgPQwjBAS1dwSlbQJSGlFKUaBVN6ANoFkdAiQ7LleWv83V9lChoBmgJaA9DCCP2CaAYV01AlIaUUpRoFU3oA2gWR0CJGi3hGYrsdX2UKGgGaAloD0MIzt+EQgRMHECUhpRSlGgVTZkBaBZHQIlBU9KVY6p1fZQoaAZoCWgPQwgJqdvZV5pLQJSGlFKUaBVN6ANoFkdAiUHuARTS9nV9lChoBmgJaA9DCO8dNSbEO1VAlIaUUpRoFU3oA2gWR0CJSFaxoqTbdX2UKGgGaAloD0MIvvc3aK8OYECUhpRSlGgVTegDaBZHQIlMrpkf9xZ1fZQoaAZoCWgPQwjT3AphNaxCwJSGlFKUaBVNJAFoFkdAiVODuBtk4HV9lChoBmgJaA9DCCR/MPDcnl9AlIaUUpRoFU3oA2gWR0CJVzLlFMIvdX2UKGgGaAloD0MIpOL/jqjlXkCUhpRSlGgVTegDaBZHQIlfE+5e7cx1fZQoaAZoCWgPQwjGTQ00H95hQJSGlFKUaBVN6ANoFkdAiWJFvIfbK3V9lChoBmgJaA9DCNPAj2pYaGBAlIaUUpRoFU3oA2gWR0CJdRMuez2OdX2UKGgGaAloD0MIiudsAaHvVECUhpRSlGgVTegDaBZHQIl8kQGwA2h1fZQoaAZoCWgPQwjqPCr+bx1gQJSGlFKUaBVN6ANoFkdAiYzSbYsd1nV9lChoBmgJaA9DCOHs1jIZql1AlIaUUpRoFU3oA2gWR0CJmfFERaoudX2UKGgGaAloD0MI7DNnfcrvU0CUhpRSlGgVTegDaBZHQImfm76Hj6x1fZQoaAZoCWgPQwgRGVbxRnJcQJSGlFKUaBVN6ANoFkdAiajJhF3IMnV9lChoBmgJaA9DCHYZ/tMNPWNAlIaUUpRoFU3oA2gWR0CJsEdCmdiEdX2UKGgGaAloD0MIprqAlxmsSMCUhpRSlGgVTRkBaBZHQImyAXZXdTJ1fZQoaAZoCWgPQwjnVgirsRReQJSGlFKUaBVN6ANoFkdAibrSDh99dHV9lChoBmgJaA9DCCTTodPzbV5AlIaUUpRoFU3oA2gWR0CJvCTq0MPSdX2UKGgGaAloD0MIQYAMHTsPX0CUhpRSlGgVTegDaBZHQIm8svmHP/t1fZQoaAZoCWgPQwjLSL2nco9VQJSGlFKUaBVN6ANoFkdAielX4CZF5XV9lChoBmgJaA9DCMCTFi4rnGFAlIaUUpRoFU3oA2gWR0CJ7eUVSGahdX2UKGgGaAloD0MIaTf6mA8aWECUhpRSlGgVTegDaBZHQIn1DKq4pc51fZQoaAZoCWgPQwguyQG7msQnwJSGlFKUaBVNHgFoFkdAifeRt52Qn3V9lChoBmgJaA9DCCWVKeYgrVpAlIaUUpRoFU3oA2gWR0CJ+NT9bX6JdX2UKGgGaAloD0MI9l580R4bYUCUhpRSlGgVTegDaBZHQIoAONWEK3N1fZQoaAZoCWgPQwjhRV9BmpNaQJSGlFKUaBVN6ANoFkdAigOMi0OVgXV9lChoBmgJaA9DCCRkIM+ufWBAlIaUUpRoFU3oA2gWR0CKF94HHFP0dX2UKGgGaAloD0MIPE88Z4tuYECUhpRSlGgVTegDaBZHQIofVzEJjUd1fZQoaAZoCWgPQwjt1jIZjlcWwJSGlFKUaBVL9mgWR0CKIx3hXKbKdX2UKGgGaAloD0MImQzH8xnQCcCUhpRSlGgVS75oFkdAijEXwb2lEnV9lChoBmgJaA9DCJY+dEF9dl1AlIaUUpRoFU3oA2gWR0CKPD0PpY9xdX2UKGgGaAloD0MIVRUaiGUiX0CUhpRSlGgVTegDaBZHQIpBtj5Kvmp1fZQoaAZoCWgPQwjEr1jDRdI8QJSGlFKUaBVNBQFoFkdAikWVk1/DtXV9lChoBmgJaA9DCD7QCgxZNWFAlIaUUpRoFU3oA2gWR0CKSrARChN/dX2UKGgGaAloD0MI+x9grdpSXUCUhpRSlGgVTegDaBZHQIpTVsrNGEx1fZQoaAZoCWgPQwhZbJOKxgouwJSGlFKUaBVL1mgWR0CKVsscQyyldX2UKGgGaAloD0MIKNap8j3QYECUhpRSlGgVTegDaBZHQIpciswL3K11fZQoaAZoCWgPQwgLX1/r0sBmQJSGlFKUaBVN6ANoFkdAil3i2MKkVXV9lChoBmgJaA9DCF4SZ0XUqV9AlIaUUpRoFU3oA2gWR0CKXnhl18sudX2UKGgGaAloD0MIo+VAD7XtWkCUhpRSlGgVTegDaBZHQIqLaV4X40x1fZQoaAZoCWgPQwipFabvNV9gQJSGlFKUaBVN6ANoFkdAipApOvdM03V9lChoBmgJaA9DCAH3PH/aemBAlIaUUpRoFU3oA2gWR0CKl3wOvt+kdX2UKGgGaAloD0MISKXY0TjIYUCUhpRSlGgVTegDaBZHQIqaIV9F4LV1fZQoaAZoCWgPQwgU7L/OTSVQQJSGlFKUaBVN6ANoFkdAipt1lGwzL3V9lChoBmgJaA9DCIF2hxQDRAlAlIaUUpRoFUv+aBZHQIqiINutOmB1fZQoaAZoCWgPQwgPRYE+kfVeQJSGlFKUaBVN6ANoFkdAiqOIZAIIGHV9lChoBmgJaA9DCJcaoZ+pNxdAlIaUUpRoFU0/AWgWR0CKqEsPrfLtdX2UKGgGaAloD0MICB7f3jWoF8CUhpRSlGgVS9hoFkdAirwh/RVp9XV9lChoBmgJaA9DCPHydK4oD1lAlIaUUpRoFU3oA2gWR0CKwZhiLEUCdX2UKGgGaAloD0MIhv90AwUmYUCUhpRSlGgVTegDaBZHQIrSZZwGW2R1fZQoaAZoCWgPQwjCFVCop4xgQJSGlFKUaBVN6ANoFkdAiuJVY6nzhHV9lChoBmgJaA9DCCUH7GrytWNAlIaUUpRoFU3oA2gWR0CK5l2St/4JdX2UKGgGaAloD0MIM6ZgjTNkYUCUhpRSlGgVTegDaBZHQIrrSWLP2PF1fZQoaAZoCWgPQwjOGOYEbfZfQJSGlFKUaBVN6ANoFkdAivOlZPl+3HV9lChoBmgJaA9DCOlg/Z/DeVdAlIaUUpRoFU3oA2gWR0CK9sXiR4hVdX2UKGgGaAloD0MII57sZsaaY0CUhpRSlGgVTegDaBZHQIr97uF6Avt1fZQoaAZoCWgPQwhseeV6201fQJSGlFKUaBVN6ANoFkdAiyr8L8aXKXV9lChoBmgJaA9DCNriGp/JsF9AlIaUUpRoFU3oA2gWR0CLL7RMvh60dX2UKGgGaAloD0MIZvZ5jHIoYkCUhpRSlGgVTegDaBZHQIs3ZyGSIP91fZQoaAZoCWgPQwiVJxB2ilpfQJSGlFKUaBVN6ANoFkdAizoKmTC+DnV9lChoBmgJaA9DCFyOVyD6C2FAlIaUUpRoFU3oA2gWR0CLO2oYvWYndX2UKGgGaAloD0MI/FQVGog6Z0CUhpRSlGgVTegDaBZHQItDNn9Nvfl1fZQoaAZoCWgPQwgK98q8VQxiQJSGlFKUaBVN6ANoFkdAi0itQj2SMnV9lChoBmgJaA9DCMlXAimxrmFAlIaUUpRoFU3oA2gWR0CLXqFotcv/dX2UKGgGaAloD0MIZ53xffFeYkCUhpRSlGgVTegDaBZHQItkmu9vjwR1fZQoaAZoCWgPQwjS30vhQcBbQJSGlFKUaBVN6ANoFkdAi3iK8tf5UXV9lChoBmgJaA9DCHU+PEuQSVlAlIaUUpRoFU3oA2gWR0CLit9XLeQ/dX2UKGgGaAloD0MIBitOtRbQYkCUhpRSlGgVTegDaBZHQIuPcoWpIc11fZQoaAZoCWgPQwhJTbuY5htjQJSGlFKUaBVN6ANoFkdAi5U0Lc9GJHV9lChoBmgJaA9DCEiJXdvb9lJAlIaUUpRoFU3oA2gWR0CLnkWRA8jidX2UKGgGaAloD0MIaTo7GRyvZECUhpRSlGgVTegDaBZHQIuhyV8kUsZ1fZQoaAZoCWgPQwgKur2kMf9hQJSGlFKUaBVN6ANoFkdAi6l7eEZiu3V9lChoBmgJaA9DCH8WS5F80lhAlIaUUpRoFU3oA2gWR0CLsMcaOxSpdX2UKGgGaAloD0MIPBQF+kQ9XUCUhpRSlGgVTegDaBZHQIvbIywfQrt1fZQoaAZoCWgPQwjzzMth94ZdQJSGlFKUaBVN6ANoFkdAi+Lpxm03O3V9lChoBmgJaA9DCJ1Jm6p7HlxAlIaUUpRoFU3oA2gWR0CL5Wq//NqydX2UKGgGaAloD0MIbywoDMr3W0CUhpRSlGgVTegDaBZHQIvmqlabF0h1fZQoaAZoCWgPQwjiBRGpaadgQJSGlFKUaBVN6ANoFkdAi+4hm5DqnnV9lChoBmgJaA9DCNSBrKdWLlpAlIaUUpRoFU3oA2gWR0CL803vx6OYdX2UKGgGaAloD0MIVpkprb+yXUCUhpRSlGgVTegDaBZHQIwGr2QGOdZ1fZQoaAZoCWgPQwi0yeGTTtdXQJSGlFKUaBVN6ANoFkdAjAvniNsFdXV9lChoBmgJaA9DCNjw9EpZOlhAlIaUUpRoFU3oA2gWR0CMHb8ma6SUdX2UKGgGaAloD0MIlrIMcSyoYECUhpRSlGgVTegDaBZHQIwwHxFy7wt1fZQoaAZoCWgPQwhyNbIrrUZgQJSGlFKUaBVN6ANoFkdAjDS7vG6wuHV9lChoBmgJaA9DCPj+Bu1VJWBAlIaUUpRoFU3oA2gWR0CMOsZtNzsAdX2UKGgGaAloD0MIIeo+ACn9YECUhpRSlGgVTegDaBZHQIxElmthd+p1fZQoaAZoCWgPQwirdeJyvKphQJSGlFKUaBVN6ANoFkdAjEhkv0yxiXV9lChoBmgJaA9DCDZYOEnzol9AlIaUUpRoFU3oA2gWR0CMUKp5u63BdX2UKGgGaAloD0MI3A2itSI/YkCUhpRSlGgVTegDaBZHQIxYd16mfoR1fZQoaAZoCWgPQwiMSX8vhUJfQJSGlFKUaBVN6ANoFkdAjF2pswco6XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:544b5a94842cbbb446732d364fcd257b6f8f00b5ec792b4584aa1a55cf2c583d
3
+ size 147212
lunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lunarLander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb007d16790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb007d16820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb007d168b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb007d16940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb007d169d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb007d16a60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb007d16af0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb007d16b80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb007d16c10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb007d16ca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb007d16d30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb007d14300>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671386346433811250,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaOEb7PngS8SDuYu4pyBrrAPVU9TtDfOgAAgD8AAIA/ZhK8PMNJQ7ptcXU71cKCODd4PzpbCxO6AACAPwAAgD9NVNE99ow6uuL4EblAAk221ZlVu5fjKzgAAIA/AAAAAE3n6b2PXhW6goiBPDSakLjMEaQ6Qj97OQAAgD8AAIA/QMy9PrM9ID/2yZi+mvTgva0TkL0QvUa9AAAAAAAAAABzb7q9j64Eurb0mjvCFVw19VEJueYEWzQAAIA/AAAAADMFjz6405s/TUnhPomvpr4T3aw+hhGtPQAAAAAAAAAAzYVhvrb5DD2D4OW6twTROX5hnb4WMD06AACAPwAAgD+ARlM9ejq2P3ovOD8Mkmg61dDJvDtdaDwAAAAAAAAAAE3cAj1cH0e6+zLOOk2PXzbXdH87jW7uuQAAgD8AAIA/AFI2vuo3GT5FHeU9W+8VvmkAu72zA+c9AAAAAAAAAAAa+W6+eStAP+07/D0lXV2+fnYbvo5xFT0AAAAAAAAAAGBEPr5PazQ+3azuu0T0IL68PSE8wE3WvAAAAAAAAAAAZkd7vbj2xLlBwBK7DOaKNg4EgTqTIio6AACAPwAAgD8mj+M9KdgOusMk3LwWdOY7fpzBuqLIbLwAAAAAAACAP/oYBL4kPQo/OvQPPjlXZL4L+qS7OoVIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWg9fJgqIYECUhpRSlIwBbJRN6AOMAXSUR0CI1JlKbrkbdX2UKGgGaAloD0MI4GbxYmGFW0CUhpRSlGgVTegDaBZHQIjcFpKzzEt1fZQoaAZoCWgPQwhCsoAJ3Lq/v5SGlFKUaBVNIAFoFkdAiObfReC04XV9lChoBmgJaA9DCMbctYR84lJAlIaUUpRoFU3oA2gWR0CI7Kl7+kxidX2UKGgGaAloD0MIZePBFrvtYECUhpRSlGgVTegDaBZHQIj4naHsTnJ1fZQoaAZoCWgPQwgvw3+6gd9gQJSGlFKUaBVN6ANoFkdAiP3mplz2e3V9lChoBmgJaA9DCCWWlLvPEF5AlIaUUpRoFU3oA2gWR0CJB11FH8TBdX2UKGgGaAloD0MIx9rf2Z5LYUCUhpRSlGgVTegDaBZHQIkLTu6VdHF1fZQoaAZoCWgPQwjBAS1dwSlbQJSGlFKUaBVN6ANoFkdAiQ7LleWv83V9lChoBmgJaA9DCCP2CaAYV01AlIaUUpRoFU3oA2gWR0CJGi3hGYrsdX2UKGgGaAloD0MIzt+EQgRMHECUhpRSlGgVTZkBaBZHQIlBU9KVY6p1fZQoaAZoCWgPQwgJqdvZV5pLQJSGlFKUaBVN6ANoFkdAiUHuARTS9nV9lChoBmgJaA9DCO8dNSbEO1VAlIaUUpRoFU3oA2gWR0CJSFaxoqTbdX2UKGgGaAloD0MIvvc3aK8OYECUhpRSlGgVTegDaBZHQIlMrpkf9xZ1fZQoaAZoCWgPQwjT3AphNaxCwJSGlFKUaBVNJAFoFkdAiVODuBtk4HV9lChoBmgJaA9DCCR/MPDcnl9AlIaUUpRoFU3oA2gWR0CJVzLlFMIvdX2UKGgGaAloD0MIpOL/jqjlXkCUhpRSlGgVTegDaBZHQIlfE+5e7cx1fZQoaAZoCWgPQwjGTQ00H95hQJSGlFKUaBVN6ANoFkdAiWJFvIfbK3V9lChoBmgJaA9DCNPAj2pYaGBAlIaUUpRoFU3oA2gWR0CJdRMuez2OdX2UKGgGaAloD0MIiudsAaHvVECUhpRSlGgVTegDaBZHQIl8kQGwA2h1fZQoaAZoCWgPQwjqPCr+bx1gQJSGlFKUaBVN6ANoFkdAiYzSbYsd1nV9lChoBmgJaA9DCOHs1jIZql1AlIaUUpRoFU3oA2gWR0CJmfFERaoudX2UKGgGaAloD0MI7DNnfcrvU0CUhpRSlGgVTegDaBZHQImfm76Hj6x1fZQoaAZoCWgPQwgRGVbxRnJcQJSGlFKUaBVN6ANoFkdAiajJhF3IMnV9lChoBmgJaA9DCHYZ/tMNPWNAlIaUUpRoFU3oA2gWR0CJsEdCmdiEdX2UKGgGaAloD0MIprqAlxmsSMCUhpRSlGgVTRkBaBZHQImyAXZXdTJ1fZQoaAZoCWgPQwjnVgirsRReQJSGlFKUaBVN6ANoFkdAibrSDh99dHV9lChoBmgJaA9DCCTTodPzbV5AlIaUUpRoFU3oA2gWR0CJvCTq0MPSdX2UKGgGaAloD0MIQYAMHTsPX0CUhpRSlGgVTegDaBZHQIm8svmHP/t1fZQoaAZoCWgPQwjLSL2nco9VQJSGlFKUaBVN6ANoFkdAielX4CZF5XV9lChoBmgJaA9DCMCTFi4rnGFAlIaUUpRoFU3oA2gWR0CJ7eUVSGahdX2UKGgGaAloD0MIaTf6mA8aWECUhpRSlGgVTegDaBZHQIn1DKq4pc51fZQoaAZoCWgPQwguyQG7msQnwJSGlFKUaBVNHgFoFkdAifeRt52Qn3V9lChoBmgJaA9DCCWVKeYgrVpAlIaUUpRoFU3oA2gWR0CJ+NT9bX6JdX2UKGgGaAloD0MI9l580R4bYUCUhpRSlGgVTegDaBZHQIoAONWEK3N1fZQoaAZoCWgPQwjhRV9BmpNaQJSGlFKUaBVN6ANoFkdAigOMi0OVgXV9lChoBmgJaA9DCCRkIM+ufWBAlIaUUpRoFU3oA2gWR0CKF94HHFP0dX2UKGgGaAloD0MIPE88Z4tuYECUhpRSlGgVTegDaBZHQIofVzEJjUd1fZQoaAZoCWgPQwjt1jIZjlcWwJSGlFKUaBVL9mgWR0CKIx3hXKbKdX2UKGgGaAloD0MImQzH8xnQCcCUhpRSlGgVS75oFkdAijEXwb2lEnV9lChoBmgJaA9DCJY+dEF9dl1AlIaUUpRoFU3oA2gWR0CKPD0PpY9xdX2UKGgGaAloD0MIVRUaiGUiX0CUhpRSlGgVTegDaBZHQIpBtj5Kvmp1fZQoaAZoCWgPQwjEr1jDRdI8QJSGlFKUaBVNBQFoFkdAikWVk1/DtXV9lChoBmgJaA9DCD7QCgxZNWFAlIaUUpRoFU3oA2gWR0CKSrARChN/dX2UKGgGaAloD0MI+x9grdpSXUCUhpRSlGgVTegDaBZHQIpTVsrNGEx1fZQoaAZoCWgPQwhZbJOKxgouwJSGlFKUaBVL1mgWR0CKVsscQyyldX2UKGgGaAloD0MIKNap8j3QYECUhpRSlGgVTegDaBZHQIpciswL3K11fZQoaAZoCWgPQwgLX1/r0sBmQJSGlFKUaBVN6ANoFkdAil3i2MKkVXV9lChoBmgJaA9DCF4SZ0XUqV9AlIaUUpRoFU3oA2gWR0CKXnhl18sudX2UKGgGaAloD0MIo+VAD7XtWkCUhpRSlGgVTegDaBZHQIqLaV4X40x1fZQoaAZoCWgPQwipFabvNV9gQJSGlFKUaBVN6ANoFkdAipApOvdM03V9lChoBmgJaA9DCAH3PH/aemBAlIaUUpRoFU3oA2gWR0CKl3wOvt+kdX2UKGgGaAloD0MISKXY0TjIYUCUhpRSlGgVTegDaBZHQIqaIV9F4LV1fZQoaAZoCWgPQwgU7L/OTSVQQJSGlFKUaBVN6ANoFkdAipt1lGwzL3V9lChoBmgJaA9DCIF2hxQDRAlAlIaUUpRoFUv+aBZHQIqiINutOmB1fZQoaAZoCWgPQwgPRYE+kfVeQJSGlFKUaBVN6ANoFkdAiqOIZAIIGHV9lChoBmgJaA9DCJcaoZ+pNxdAlIaUUpRoFU0/AWgWR0CKqEsPrfLtdX2UKGgGaAloD0MICB7f3jWoF8CUhpRSlGgVS9hoFkdAirwh/RVp9XV9lChoBmgJaA9DCPHydK4oD1lAlIaUUpRoFU3oA2gWR0CKwZhiLEUCdX2UKGgGaAloD0MIhv90AwUmYUCUhpRSlGgVTegDaBZHQIrSZZwGW2R1fZQoaAZoCWgPQwjCFVCop4xgQJSGlFKUaBVN6ANoFkdAiuJVY6nzhHV9lChoBmgJaA9DCCUH7GrytWNAlIaUUpRoFU3oA2gWR0CK5l2St/4JdX2UKGgGaAloD0MIM6ZgjTNkYUCUhpRSlGgVTegDaBZHQIrrSWLP2PF1fZQoaAZoCWgPQwjOGOYEbfZfQJSGlFKUaBVN6ANoFkdAivOlZPl+3HV9lChoBmgJaA9DCOlg/Z/DeVdAlIaUUpRoFU3oA2gWR0CK9sXiR4hVdX2UKGgGaAloD0MII57sZsaaY0CUhpRSlGgVTegDaBZHQIr97uF6Avt1fZQoaAZoCWgPQwhseeV6201fQJSGlFKUaBVN6ANoFkdAiyr8L8aXKXV9lChoBmgJaA9DCNriGp/JsF9AlIaUUpRoFU3oA2gWR0CLL7RMvh60dX2UKGgGaAloD0MIZvZ5jHIoYkCUhpRSlGgVTegDaBZHQIs3ZyGSIP91fZQoaAZoCWgPQwiVJxB2ilpfQJSGlFKUaBVN6ANoFkdAizoKmTC+DnV9lChoBmgJaA9DCFyOVyD6C2FAlIaUUpRoFU3oA2gWR0CLO2oYvWYndX2UKGgGaAloD0MI/FQVGog6Z0CUhpRSlGgVTegDaBZHQItDNn9Nvfl1fZQoaAZoCWgPQwgK98q8VQxiQJSGlFKUaBVN6ANoFkdAi0itQj2SMnV9lChoBmgJaA9DCMlXAimxrmFAlIaUUpRoFU3oA2gWR0CLXqFotcv/dX2UKGgGaAloD0MIZ53xffFeYkCUhpRSlGgVTegDaBZHQItkmu9vjwR1fZQoaAZoCWgPQwjS30vhQcBbQJSGlFKUaBVN6ANoFkdAi3iK8tf5UXV9lChoBmgJaA9DCHU+PEuQSVlAlIaUUpRoFU3oA2gWR0CLit9XLeQ/dX2UKGgGaAloD0MIBitOtRbQYkCUhpRSlGgVTegDaBZHQIuPcoWpIc11fZQoaAZoCWgPQwhJTbuY5htjQJSGlFKUaBVN6ANoFkdAi5U0Lc9GJHV9lChoBmgJaA9DCEiJXdvb9lJAlIaUUpRoFU3oA2gWR0CLnkWRA8jidX2UKGgGaAloD0MIaTo7GRyvZECUhpRSlGgVTegDaBZHQIuhyV8kUsZ1fZQoaAZoCWgPQwgKur2kMf9hQJSGlFKUaBVN6ANoFkdAi6l7eEZiu3V9lChoBmgJaA9DCH8WS5F80lhAlIaUUpRoFU3oA2gWR0CLsMcaOxSpdX2UKGgGaAloD0MIPBQF+kQ9XUCUhpRSlGgVTegDaBZHQIvbIywfQrt1fZQoaAZoCWgPQwjzzMth94ZdQJSGlFKUaBVN6ANoFkdAi+Lpxm03O3V9lChoBmgJaA9DCJ1Jm6p7HlxAlIaUUpRoFU3oA2gWR0CL5Wq//NqydX2UKGgGaAloD0MIbywoDMr3W0CUhpRSlGgVTegDaBZHQIvmqlabF0h1fZQoaAZoCWgPQwjiBRGpaadgQJSGlFKUaBVN6ANoFkdAi+4hm5DqnnV9lChoBmgJaA9DCNSBrKdWLlpAlIaUUpRoFU3oA2gWR0CL803vx6OYdX2UKGgGaAloD0MIVpkprb+yXUCUhpRSlGgVTegDaBZHQIwGr2QGOdZ1fZQoaAZoCWgPQwi0yeGTTtdXQJSGlFKUaBVN6ANoFkdAjAvniNsFdXV9lChoBmgJaA9DCNjw9EpZOlhAlIaUUpRoFU3oA2gWR0CMHb8ma6SUdX2UKGgGaAloD0MIlrIMcSyoYECUhpRSlGgVTegDaBZHQIwwHxFy7wt1fZQoaAZoCWgPQwhyNbIrrUZgQJSGlFKUaBVN6ANoFkdAjDS7vG6wuHV9lChoBmgJaA9DCPj+Bu1VJWBAlIaUUpRoFU3oA2gWR0CMOsZtNzsAdX2UKGgGaAloD0MIIeo+ACn9YECUhpRSlGgVTegDaBZHQIxElmthd+p1fZQoaAZoCWgPQwirdeJyvKphQJSGlFKUaBVN6ANoFkdAjEhkv0yxiXV9lChoBmgJaA9DCDZYOEnzol9AlIaUUpRoFU3oA2gWR0CMUKp5u63BdX2UKGgGaAloD0MI3A2itSI/YkCUhpRSlGgVTegDaBZHQIxYd16mfoR1fZQoaAZoCWgPQwiMSX8vhUJfQJSGlFKUaBVN6ANoFkdAjF2pswco6XVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
lunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48b7f8140044e5bfdc2d0d58b71b6510594361c9d87a11fd5e0f9b6467a74a5d
3
+ size 87929
lunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c64823ac99721db1f982b5da7a9d72061225f3ecc4e72a53d55863607445eb22
3
+ size 43201
lunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (264 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.14001160066764, "std_reward": 18.365383451161772, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T19:03:53.859211"}