coreyabs-db
commited on
Commit
·
21a6752
1
Parent(s):
e2ac35c
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: mt5-small-finetuned-amazon-en-es
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mt5-small-finetuned-amazon-en-es
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.0132
|
21 |
+
- Rouge1: 16.4719
|
22 |
+
- Rouge2: 7.9366
|
23 |
+
- Rougel: 16.2123
|
24 |
+
- Rougelsum: 16.2853
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5.6e-05
|
44 |
+
- train_batch_size: 8
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- distributed_type: multi-GPU
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 8
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
|
56 |
+
| 3.9249 | 1.0 | 1209 | 3.1904 | 15.8207 | 8.0555 | 15.4584 | 15.648 |
|
57 |
+
| 3.5688 | 2.0 | 2418 | 3.0812 | 16.3271 | 8.1479 | 15.9001 | 16.0134 |
|
58 |
+
| 3.3905 | 3.0 | 3627 | 3.0442 | 15.9864 | 7.295 | 15.4247 | 15.5848 |
|
59 |
+
| 3.2728 | 4.0 | 4836 | 3.0304 | 16.2893 | 7.5851 | 15.9494 | 16.0117 |
|
60 |
+
| 3.1958 | 5.0 | 6045 | 3.0169 | 15.4888 | 7.4495 | 15.2244 | 15.2326 |
|
61 |
+
| 3.1359 | 6.0 | 7254 | 3.0158 | 16.3866 | 8.2218 | 16.0625 | 16.0953 |
|
62 |
+
| 3.1059 | 7.0 | 8463 | 3.0075 | 15.9134 | 7.8387 | 15.626 | 15.6499 |
|
63 |
+
| 3.0852 | 8.0 | 9672 | 3.0132 | 16.4719 | 7.9366 | 16.2123 | 16.2853 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.26.1
|
69 |
+
- Pytorch 1.13.1+cu117
|
70 |
+
- Datasets 2.12.0
|
71 |
+
- Tokenizers 0.13.2
|