Corentin commited on
Commit
0245482
·
1 Parent(s): 3282ccf

Model Card and tensorboard

Browse files
README.md CHANGED
@@ -1,3 +1,138 @@
1
  ---
2
  license: agpl-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: agpl-3.0
3
+ tags:
4
+ - image
5
+ - keras
6
+ - myology
7
+ - biology
8
+ - histology
9
+ - muscle
10
+ - cells
11
+ - fibers
12
+ - myopathy
13
+ - SDH
14
+ - myoquant
15
+ - classification
16
+ - mitochondria
17
+ datasets:
18
+ - corentinm7/MyoQuant-SDH-Data
19
+ metrics:
20
+ - accuracy
21
+ library_name: keras
22
+ model-index:
23
+ - name: MyoQuant-SDH-Resnet50V2
24
+ results:
25
+ - task:
26
+ type: image-classification # Required. Example: automatic-speech-recognition
27
+ name: Image Classification # Optional. Example: Speech Recognition
28
+ dataset:
29
+ type: corentinm7/MyoQuant-SDH-Data # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
30
+ name: MyoQuant SDH Data # Required. A pretty name for the dataset. Example: Common Voice (French)
31
+ split: test # Optional. Example: test
32
+ metrics:
33
+ - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
34
+ value: 0.9285 # Required. Example: 20.90
35
+ name: Test Accuracy # Optional. Example: Test WER
36
  ---
37
+
38
+ ## Model description
39
+
40
+ This is the model card for the SDH Model used by the [MyoQuant](https://github.com/lambda-science/MyoQuant) tool.
41
+
42
+ ## Intended uses & limitations
43
+
44
+ It's intended to allow people to use, improve and verify the reproducibility of our MyoQuant tool. The SDH model is used to classify SDH stained muscle fiber with abnormal mitochondria profile.
45
+
46
+ ## Training and evaluation data
47
+
48
+ It's trained on the [corentinm7/MyoQuant-SDH-Data](https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data), avaliable on HuggingFace Dataset Hub.
49
+
50
+ ## Training procedure
51
+
52
+ This model was trained using the ResNet50V2 model architecture in Keras.
53
+ All images have been resized to 256x256 using the `tf.image.resize()` function from Tensorflow.
54
+ Data augmentation was included as layers before ResNet50V2.
55
+ Full model code:
56
+
57
+ ```python
58
+ data_augmentation = tf.keras.Sequential([
59
+ layers.Resizing(256, 256, interpolation="bilinear", crop_to_aspect_ratio=True, input_shape=(None, None, 3)),
60
+ layers.Rescaling(scale=1./127.5, offset=-1),
61
+ RandomBrightness(factor=0.2, value_range=(-1.0, 1.0)), # Not avaliable in tensorflow 2.8
62
+ layers.RandomContrast(factor=0.2),
63
+ layers.RandomFlip("horizontal_and_vertical"),
64
+ layers.RandomRotation(0.3, fill_mode="constant"),
65
+ layers.RandomZoom(.2, .2, fill_mode="constant"),
66
+ layers.RandomTranslation(0.2, .2,fill_mode="constant"),
67
+
68
+ ])
69
+ model = models.Sequential()
70
+ model.add(data_augmentation)
71
+ model.add(
72
+ ResNet50V2(
73
+ include_top=False,
74
+ input_shape=(256,256,3),
75
+ pooling="avg",
76
+ )
77
+ )
78
+ model.add(layers.Flatten())
79
+ model.add(layers.Dense(2, activation='softmax'))
80
+ ```
81
+
82
+ ```
83
+ _________________________________________________________________
84
+ Layer (type) Output Shape Param #
85
+ =================================================================
86
+ sequential (Sequential) (None, 256, 256, 3) 0
87
+
88
+ resnet50v2 (Functional) (None, 2048) 23564800
89
+
90
+ flatten (Flatten) (None, 2048) 0
91
+
92
+ dense (Dense) (None, 2) 4098
93
+
94
+ =================================================================
95
+ Total params: 23,568,898
96
+ Trainable params: 23,523,458
97
+ Non-trainable params: 45,440
98
+ _________________________________________________________________
99
+ ```
100
+
101
+ We used a ResNet50V2 pre-trained on ImageNet as a starting point and trained the model using an EarlyStopping with a value of 20 (i.e. if validation loss doesn't improve after 20 epoch, stop the training and roll back to the epoch with lowest val loss.)
102
+ Class imbalance was handled by using the class\_-weight attribute during training. It was calculated for each class as `(1/n. elem of the class) * (n. of all training elem / 2)` giving in our case: `{0: 0.6593016912165849, 1: 2.069349315068493}`
103
+
104
+ ### Training hyperparameters
105
+
106
+ The following hyperparameters were used during training:
107
+
108
+ - optimizer: Adam
109
+ - Learning Rate Schedule: `ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=MIN_LR` with START_LR = 1e-5 and MIN_LR = 1e-7
110
+ - Loss Function: SparseCategoricalCrossentropy
111
+ - Metric: Accuracy
112
+
113
+ ## Training Curve
114
+
115
+ Plot of the accuracy vs epoch and loss vs epoch for training and validation set.
116
+ ![Training Curve](./training_curve.png)
117
+
118
+ ## Test Results
119
+
120
+ Results for accuracy metrics on the test split of the [corentinm7/MyoQuant-SDH-Data](https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data) dataset.
121
+
122
+ ```
123
+ 105/105 - 15s - loss: 0.1618 - accuracy: 0.9285 - 15s/epoch - 140ms/step
124
+ Test data results:
125
+ 0.928528904914856
126
+ ```
127
+
128
+ # How to Import the Model
129
+
130
+ To import this model as it was trained in Tensorflow 2.8 on Google Colab, RandomBrightness layer had to be added by hand (it was only introduced in Tensorflow 2.10.). So you will need to download the `random_brightness.py` fille in addition to the model.
131
+ Then the model can easily be imported in Tensorflow/Keras using:
132
+
133
+ ```python
134
+ from .random_brightness import *
135
+ model_sdh = keras.models.load_model(
136
+ "model.h5", custom_objects={"RandomBrightness": RandomBrightness}
137
+ )
138
+ ```
random_brightness.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @title Random Brightness Layer
2
+ import tensorflow as tf
3
+ from keras import backend
4
+ from keras.engine import base_layer
5
+ from keras.engine import base_preprocessing_layer
6
+ from keras.layers.preprocessing import preprocessing_utils as utils
7
+ from keras.utils import tf_utils
8
+
9
+ from tensorflow.python.ops import stateless_random_ops
10
+ from tensorflow.python.util.tf_export import keras_export
11
+ from tensorflow.tools.docs import doc_controls
12
+
13
+
14
+ @keras_export("keras.__internal__.layers.BaseImageAugmentationLayer")
15
+ class BaseImageAugmentationLayer(base_layer.BaseRandomLayer):
16
+ """Abstract base layer for image augmentaion.
17
+ This layer contains base functionalities for preprocessing layers which
18
+ augment image related data, eg. image and in future, label and bounding boxes.
19
+ The subclasses could avoid making certain mistakes and reduce code
20
+ duplications.
21
+ This layer requires you to implement one method: `augment_image()`, which
22
+ augments one single image during the training. There are a few additional
23
+ methods that you can implement for added functionality on the layer:
24
+ `augment_label()`, which handles label augmentation if the layer supports
25
+ that.
26
+ `augment_bounding_box()`, which handles the bounding box augmentation, if the
27
+ layer supports that.
28
+ `get_random_transformation()`, which should produce a random transformation
29
+ setting. The tranformation object, which could be any type, will be passed to
30
+ `augment_image`, `augment_label` and `augment_bounding_box`, to coodinate
31
+ the randomness behavior, eg, in the RandomFlip layer, the image and
32
+ bounding_box should be changed in the same way.
33
+ The `call()` method support two formats of inputs:
34
+ 1. Single image tensor with 3D (HWC) or 4D (NHWC) format.
35
+ 2. A dict of tensors with stable keys. The supported keys are:
36
+ `"images"`, `"labels"` and `"bounding_boxes"` at the moment. We might add
37
+ more keys in future when we support more types of augmentation.
38
+ The output of the `call()` will be in two formats, which will be the same
39
+ structure as the inputs.
40
+ The `call()` will handle the logic detecting the training/inference
41
+ mode, unpack the inputs, forward to the correct function, and pack the output
42
+ back to the same structure as the inputs.
43
+ By default the `call()` method leverages the `tf.vectorized_map()` function.
44
+ Auto-vectorization can be disabled by setting `self.auto_vectorize = False`
45
+ in your `__init__()` method. When disabled, `call()` instead relies
46
+ on `tf.map_fn()`. For example:
47
+ ```python
48
+ class SubclassLayer(BaseImageAugmentationLayer):
49
+ def __init__(self):
50
+ super().__init__()
51
+ self.auto_vectorize = False
52
+ ```
53
+ Example:
54
+ ```python
55
+ class RandomContrast(BaseImageAugmentationLayer):
56
+ def __init__(self, factor=(0.5, 1.5), **kwargs):
57
+ super().__init__(**kwargs)
58
+ self._factor = factor
59
+ def augment_image(self, image, transformation=None):
60
+ random_factor = tf.random.uniform([], self._factor[0], self._factor[1])
61
+ mean = tf.math.reduced_mean(inputs, axis=-1, keep_dim=True)
62
+ return (inputs - mean) * random_factor + mean
63
+ ```
64
+ Note that since the randomness is also a common functionnality, this layer
65
+ also includes a tf.keras.backend.RandomGenerator, which can be used to produce
66
+ the random numbers. The random number generator is stored in the
67
+ `self._random_generator` attribute.
68
+ """
69
+
70
+ def __init__(self, rate=1.0, seed=None, **kwargs):
71
+ super().__init__(seed=seed, **kwargs)
72
+ self.rate = rate
73
+
74
+ @property
75
+ def auto_vectorize(self):
76
+ """Control whether automatic vectorization occurs.
77
+ By default the `call()` method leverages the `tf.vectorized_map()` function.
78
+ Auto-vectorization can be disabled by setting `self.auto_vectorize = False`
79
+ in your `__init__()` method. When disabled, `call()` instead relies
80
+ on `tf.map_fn()`. For example:
81
+ ```python
82
+ class SubclassLayer(BaseImageAugmentationLayer):
83
+ def __init__(self):
84
+ super().__init__()
85
+ self.auto_vectorize = False
86
+ ```
87
+ """
88
+ return getattr(self, "_auto_vectorize", True)
89
+
90
+ @auto_vectorize.setter
91
+ def auto_vectorize(self, auto_vectorize):
92
+ self._auto_vectorize = auto_vectorize
93
+
94
+ @property
95
+ def _map_fn(self):
96
+ if self.auto_vectorize:
97
+ return tf.vectorized_map
98
+ else:
99
+ return tf.map_fn
100
+
101
+ @doc_controls.for_subclass_implementers
102
+ def augment_image(self, image, transformation=None):
103
+ """Augment a single image during training.
104
+ Args:
105
+ image: 3D image input tensor to the layer. Forwarded from `layer.call()`.
106
+ transformation: The transformation object produced by
107
+ `get_random_transformation`. Used to coordinate the randomness between
108
+ image, label and bounding box.
109
+ Returns:
110
+ output 3D tensor, which will be forward to `layer.call()`.
111
+ """
112
+ raise NotImplementedError()
113
+
114
+ @doc_controls.for_subclass_implementers
115
+ def augment_label(self, label, transformation=None):
116
+ """Augment a single label during training.
117
+ Args:
118
+ label: 1D label to the layer. Forwarded from `layer.call()`.
119
+ transformation: The transformation object produced by
120
+ `get_random_transformation`. Used to coordinate the randomness between
121
+ image, label and bounding box.
122
+ Returns:
123
+ output 1D tensor, which will be forward to `layer.call()`.
124
+ """
125
+ raise NotImplementedError()
126
+
127
+ @doc_controls.for_subclass_implementers
128
+ def augment_bounding_box(self, bounding_box, transformation=None):
129
+ """Augment bounding boxes for one image during training.
130
+ Args:
131
+ bounding_box: 2D bounding boxes to the layer. Forwarded from `call()`.
132
+ transformation: The transformation object produced by
133
+ `get_random_transformation`. Used to coordinate the randomness between
134
+ image, label and bounding box.
135
+ Returns:
136
+ output 2D tensor, which will be forward to `layer.call()`.
137
+ """
138
+ raise NotImplementedError()
139
+
140
+ @doc_controls.for_subclass_implementers
141
+ def get_random_transformation(self, image=None, label=None, bounding_box=None):
142
+ """Produce random transformation config for one single input.
143
+ This is used to produce same randomness between image/label/bounding_box.
144
+ Args:
145
+ image: 3D image tensor from inputs.
146
+ label: optional 1D label tensor from inputs.
147
+ bounding_box: optional 2D bounding boxes tensor from inputs.
148
+ Returns:
149
+ Any type of object, which will be forwarded to `augment_image`,
150
+ `augment_label` and `augment_bounding_box` as the `transformation`
151
+ parameter.
152
+ """
153
+ return None
154
+
155
+ def call(self, inputs, training=True):
156
+ inputs = self._ensure_inputs_are_compute_dtype(inputs)
157
+ if training:
158
+ inputs, is_dict = self._format_inputs(inputs)
159
+ images = inputs["images"]
160
+ if images.shape.rank == 3:
161
+ return self._format_output(self._augment(inputs), is_dict)
162
+ elif images.shape.rank == 4:
163
+ return self._format_output(self._batch_augment(inputs), is_dict)
164
+ else:
165
+ raise ValueError(
166
+ "Image augmentation layers are expecting inputs to be "
167
+ "rank 3 (HWC) or 4D (NHWC) tensors. Got shape: "
168
+ f"{images.shape}"
169
+ )
170
+ else:
171
+ return inputs
172
+
173
+ def _augment(self, inputs):
174
+ image = inputs.get("images", None)
175
+ label = inputs.get("labels", None)
176
+ bounding_box = inputs.get("bounding_boxes", None)
177
+ transformation = self.get_random_transformation(
178
+ image=image, label=label, bounding_box=bounding_box
179
+ ) # pylint: disable=assignment-from-none
180
+ image = self.augment_image(image, transformation=transformation)
181
+ result = {"images": image}
182
+ if label is not None:
183
+ label = self.augment_label(label, transformation=transformation)
184
+ result["labels"] = label
185
+ if bounding_box is not None:
186
+ bounding_box = self.augment_bounding_box(
187
+ bounding_box, transformation=transformation
188
+ )
189
+ result["bounding_boxes"] = bounding_box
190
+ return result
191
+
192
+ def _batch_augment(self, inputs):
193
+ return self._map_fn(self._augment, inputs)
194
+
195
+ def _format_inputs(self, inputs):
196
+ if tf.is_tensor(inputs):
197
+ # single image input tensor
198
+ return {"images": inputs}, False
199
+ elif isinstance(inputs, dict):
200
+ # TODO(scottzhu): Check if it only contains the valid keys
201
+ return inputs, True
202
+ else:
203
+ raise ValueError(
204
+ f"Expect the inputs to be image tensor or dict. Got {inputs}"
205
+ )
206
+
207
+ def _format_output(self, output, is_dict):
208
+ if not is_dict:
209
+ return output["images"]
210
+ else:
211
+ return output
212
+
213
+ def _ensure_inputs_are_compute_dtype(self, inputs):
214
+ if isinstance(inputs, dict):
215
+ inputs["images"] = utils.ensure_tensor(inputs["images"], self.compute_dtype)
216
+ else:
217
+ inputs = utils.ensure_tensor(inputs, self.compute_dtype)
218
+ return inputs
219
+
220
+
221
+ @keras_export("keras.layers.RandomBrightness", v1=[])
222
+ class RandomBrightness(BaseImageAugmentationLayer):
223
+ """A preprocessing layer which randomly adjusts brightness during training.
224
+ This layer will randomly increase/reduce the brightness for the input RGB
225
+ images. At inference time, the output will be identical to the input.
226
+ Call the layer with `training=True` to adjust the brightness of the input.
227
+ Note that different brightness adjustment factors
228
+ will be apply to each the images in the batch.
229
+ For an overview and full list of preprocessing layers, see the preprocessing
230
+ [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers).
231
+ Args:
232
+ factor: Float or a list/tuple of 2 floats between -1.0 and 1.0. The
233
+ factor is used to determine the lower bound and upper bound of the
234
+ brightness adjustment. A float value will be chosen randomly between
235
+ the limits. When -1.0 is chosen, the output image will be black, and
236
+ when 1.0 is chosen, the image will be fully white. When only one float
237
+ is provided, eg, 0.2, then -0.2 will be used for lower bound and 0.2
238
+ will be used for upper bound.
239
+ value_range: Optional list/tuple of 2 floats for the lower and upper limit
240
+ of the values of the input data. Defaults to [0.0, 255.0]. Can be changed
241
+ to e.g. [0.0, 1.0] if the image input has been scaled before this layer.
242
+ The brightness adjustment will be scaled to this range, and the
243
+ output values will be clipped to this range.
244
+ seed: optional integer, for fixed RNG behavior.
245
+ Inputs: 3D (HWC) or 4D (NHWC) tensor, with float or int dtype. Input pixel
246
+ values can be of any range (e.g. `[0., 1.)` or `[0, 255]`)
247
+ Output: 3D (HWC) or 4D (NHWC) tensor with brightness adjusted based on the
248
+ `factor`. By default, the layer will output floats. The output value will
249
+ be clipped to the range `[0, 255]`, the valid range of RGB colors, and
250
+ rescaled based on the `value_range` if needed.
251
+ Sample usage:
252
+ ```python
253
+ random_bright = tf.keras.layers.RandomBrightness(factor=0.2)
254
+ # An image with shape [2, 2, 3]
255
+ image = [[[1, 2, 3], [4 ,5 ,6]], [[7, 8, 9], [10, 11, 12]]]
256
+ # Assume we randomly select the factor to be 0.1, then it will apply
257
+ # 0.1 * 255 to all the channel
258
+ output = random_bright(image, training=True)
259
+ # output will be int64 with 25.5 added to each channel and round down.
260
+ tf.Tensor([[[26.5, 27.5, 28.5]
261
+ [29.5, 30.5, 31.5]]
262
+ [[32.5, 33.5, 34.5]
263
+ [35.5, 36.5, 37.5]]],
264
+ shape=(2, 2, 3), dtype=int64)
265
+ ```
266
+ """
267
+
268
+ _FACTOR_VALIDATION_ERROR = (
269
+ "The `factor` argument should be a number (or a list of two numbers) "
270
+ "in the range [-1.0, 1.0]. "
271
+ )
272
+ _VALUE_RANGE_VALIDATION_ERROR = (
273
+ "The `value_range` argument should be a list of two numbers. "
274
+ )
275
+
276
+ def __init__(self, factor, value_range=(0, 255), seed=None, **kwargs):
277
+ base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomBrightness").set(True)
278
+ super().__init__(seed=seed, force_generator=True, **kwargs)
279
+ self._set_factor(factor)
280
+ self._set_value_range(value_range)
281
+ self._seed = seed
282
+
283
+ def augment_image(self, image, transformation=None):
284
+ return self._brightness_adjust(image, transformation["rgb_delta"])
285
+
286
+ def augment_label(self, label, transformation=None):
287
+ return label
288
+
289
+ def get_random_transformation(self, image=None, label=None, bounding_box=None):
290
+ rgb_delta_shape = (1, 1, 1)
291
+ random_rgb_delta = self._random_generator.random_uniform(
292
+ shape=rgb_delta_shape,
293
+ minval=self._factor[0],
294
+ maxval=self._factor[1],
295
+ )
296
+ random_rgb_delta = random_rgb_delta * (
297
+ self._value_range[1] - self._value_range[0]
298
+ )
299
+ return {"rgb_delta": random_rgb_delta}
300
+
301
+ def _set_value_range(self, value_range):
302
+ if not isinstance(value_range, (tuple, list)):
303
+ raise ValueError(self._VALUE_RANGE_VALIDATION_ERROR + f"Got {value_range}")
304
+ if len(value_range) != 2:
305
+ raise ValueError(self._VALUE_RANGE_VALIDATION_ERROR + f"Got {value_range}")
306
+ self._value_range = sorted(value_range)
307
+
308
+ def _set_factor(self, factor):
309
+ if isinstance(factor, (tuple, list)):
310
+ if len(factor) != 2:
311
+ raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {factor}")
312
+ self._check_factor_range(factor[0])
313
+ self._check_factor_range(factor[1])
314
+ self._factor = sorted(factor)
315
+ elif isinstance(factor, (int, float)):
316
+ self._check_factor_range(factor)
317
+ factor = abs(factor)
318
+ self._factor = [-factor, factor]
319
+ else:
320
+ raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {factor}")
321
+
322
+ def _check_factor_range(self, input_number):
323
+ if input_number > 1.0 or input_number < -1.0:
324
+ raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {input_number}")
325
+
326
+ def _brightness_adjust(self, image, rgb_delta):
327
+ image = utils.ensure_tensor(image, self.compute_dtype)
328
+ rank = image.shape.rank
329
+ if rank != 3:
330
+ raise ValueError(
331
+ "Expected the input image to be rank 3. Got "
332
+ f"inputs.shape = {image.shape}"
333
+ )
334
+ rgb_delta = tf.cast(rgb_delta, image.dtype)
335
+ image += rgb_delta
336
+ return tf.clip_by_value(image, self._value_range[0], self._value_range[1])
337
+
338
+ def get_config(self):
339
+ config = {
340
+ "factor": self._factor,
341
+ "value_range": self._value_range,
342
+ "seed": self._seed,
343
+ }
344
+ base_config = super().get_config()
345
+ return dict(list(base_config.items()) + list(config.items()))
runs/sdh16k_normal_resize_20220830-083856/train/events.out.tfevents.1661848752.561a638614d6.77.0.v2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b74dc7d937740821f56203f12e53a9f279e14e65e58aae07b6f0b2cd1c37c2b9
3
+ size 8894151
runs/sdh16k_normal_resize_20220830-083856/validation/events.out.tfevents.1661848941.561a638614d6.77.1.v2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2a41bb11af557b261892fa9b42a6a8ff9ddd0917418cbdccac031a2009f7c6f
3
+ size 11236
training_curve.png ADDED