Anshoo Mehra commited on
Commit
2f18a64
·
1 Parent(s): 5b49009

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -18
README.md CHANGED
@@ -4,36 +4,58 @@ tags:
4
  metrics:
5
  - rouge
6
  model-index:
7
- - name: t5-v1-base-s-q-auto-qgen
8
  results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
 
 
13
 
14
- # t5-v1-base-s-q-auto-qgen
15
 
16
- This model is a fine-tuned version of [t5-v1-base](google/t5-v1_1-base) on an unknown dataset.
17
- It achieves the following results on the evaluation set:
18
- - Loss: 2.0511
19
- - Rouge1: 0.2149
20
- - Rouge2: 0.1011
21
- - Rougel: 0.1936
22
- - Rougelsum: 0.2014
23
 
24
- ## Model description
25
 
26
- More information needed
27
 
28
- ## Intended uses & limitations
29
 
30
- More information needed
 
 
 
 
31
 
32
- ## Training and evaluation data
 
 
 
 
 
 
 
33
 
34
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- ## Training procedure
37
 
38
  ### Training hyperparameters
39
 
 
4
  metrics:
5
  - rouge
6
  model-index:
7
+ - name: anshoomehra/question-generation-auto-t5-v1-base-s-q
8
  results: []
9
  ---
10
 
11
+ # Auto Question Generation
12
+ The model is intended to be used for Auto Question Generation task i.e. no hint are required as input. The model is expected to produce one or possibly more than one question from the provided context.
13
+
14
+ [Live Demo: Question Generation](https://huggingface.co/spaces/anshoomehra/question_generation)
15
 
16
+ Including this there are four models trained with different training sets, demo provide comparison to all in one go. However, you can reach individual projects at below links:
17
 
18
+ [Auto Question Generation v1](https://huggingface.co/anshoomehra/question-generation-auto-t5-v1-base-s)
 
 
 
 
 
 
19
 
20
+ [Auto/Hints based Question Generation v1](https://huggingface.co/anshoomehra/question-generation-auto-hints-t5-v1-base-s-q)
21
 
22
+ [Auto/Hints based Question Generation v2](https://huggingface.co/anshoomehra/question-generation-auto-hints-t5-v1-base-s-q-c)
23
 
24
+ This model can be used as below:
25
 
26
+ ```
27
+ from transformers import (
28
+ AutoModelForSeq2SeqLM,
29
+ AutoTokenizer
30
+ )
31
 
32
+ model_checkpoint = "anshoomehra/question-generation-auto-t5-v1-base-s-q"
33
+
34
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
35
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
36
+
37
+ ## Input with prompt
38
+ context="question_context: <context>"
39
+ encodings = tokenizer.encode(context, return_tensors='pt', truncation=True, padding='max_length').to(device)
40
 
41
+ ## You can play with many hyperparams to condition the output, look at demo
42
+ output = model.generate(encodings,
43
+ #max_length=300,
44
+ #min_length=20,
45
+ #length_penalty=2.0,
46
+ num_beams=4,
47
+ #early_stopping=True,
48
+ #do_sample=True,
49
+ #temperature=1.1
50
+ )
51
+
52
+ ## Multiple questions are expected to be delimited by '?' You can write a small wrapper to elegantly format. Look at the demo.
53
+ questions = [tokenizer.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=False) for id in output]
54
+ ```
55
+
56
+ ## Training and evaluation data
57
 
58
+ Custom data.
59
 
60
  ### Training hyperparameters
61