consciousAI commited on
Commit
c000ec4
1 Parent(s): 7126b05

Upload 11 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,1701 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - mteb
8
+ model-index:
9
+ - name: cai-stellaris-text-embeddings
10
+ results:
11
+ - task:
12
+ type: Classification
13
+ dataset:
14
+ type: mteb/amazon_counterfactual
15
+ name: MTEB AmazonCounterfactualClassification (en)
16
+ config: en
17
+ split: test
18
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
19
+ metrics:
20
+ - type: accuracy
21
+ value: 64.86567164179104
22
+ - type: ap
23
+ value: 28.30760041689409
24
+ - type: f1
25
+ value: 59.08589995918376
26
+ - task:
27
+ type: Classification
28
+ dataset:
29
+ type: mteb/amazon_polarity
30
+ name: MTEB AmazonPolarityClassification
31
+ config: default
32
+ split: test
33
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
34
+ metrics:
35
+ - type: accuracy
36
+ value: 65.168625
37
+ - type: ap
38
+ value: 60.131922961382166
39
+ - type: f1
40
+ value: 65.02463910192814
41
+ - task:
42
+ type: Classification
43
+ dataset:
44
+ type: mteb/amazon_reviews_multi
45
+ name: MTEB AmazonReviewsClassification (en)
46
+ config: en
47
+ split: test
48
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
49
+ metrics:
50
+ - type: accuracy
51
+ value: 31.016
52
+ - type: f1
53
+ value: 30.501226228002924
54
+ - task:
55
+ type: Retrieval
56
+ dataset:
57
+ type: arguana
58
+ name: MTEB ArguAna
59
+ config: default
60
+ split: test
61
+ revision: None
62
+ metrics:
63
+ - type: map_at_1
64
+ value: 24.609
65
+ - type: map_at_10
66
+ value: 38.793
67
+ - type: map_at_100
68
+ value: 40.074
69
+ - type: map_at_1000
70
+ value: 40.083
71
+ - type: map_at_3
72
+ value: 33.736
73
+ - type: map_at_5
74
+ value: 36.642
75
+ - type: mrr_at_1
76
+ value: 25.533
77
+ - type: mrr_at_10
78
+ value: 39.129999999999995
79
+ - type: mrr_at_100
80
+ value: 40.411
81
+ - type: mrr_at_1000
82
+ value: 40.42
83
+ - type: mrr_at_3
84
+ value: 34.033
85
+ - type: mrr_at_5
86
+ value: 36.956
87
+ - type: ndcg_at_1
88
+ value: 24.609
89
+ - type: ndcg_at_10
90
+ value: 47.288000000000004
91
+ - type: ndcg_at_100
92
+ value: 52.654999999999994
93
+ - type: ndcg_at_1000
94
+ value: 52.88699999999999
95
+ - type: ndcg_at_3
96
+ value: 36.86
97
+ - type: ndcg_at_5
98
+ value: 42.085
99
+ - type: precision_at_1
100
+ value: 24.609
101
+ - type: precision_at_10
102
+ value: 7.468
103
+ - type: precision_at_100
104
+ value: 0.979
105
+ - type: precision_at_1000
106
+ value: 0.1
107
+ - type: precision_at_3
108
+ value: 15.315000000000001
109
+ - type: precision_at_5
110
+ value: 11.721
111
+ - type: recall_at_1
112
+ value: 24.609
113
+ - type: recall_at_10
114
+ value: 74.68
115
+ - type: recall_at_100
116
+ value: 97.866
117
+ - type: recall_at_1000
118
+ value: 99.644
119
+ - type: recall_at_3
120
+ value: 45.946
121
+ - type: recall_at_5
122
+ value: 58.606
123
+ - task:
124
+ type: Clustering
125
+ dataset:
126
+ type: mteb/arxiv-clustering-p2p
127
+ name: MTEB ArxivClusteringP2P
128
+ config: default
129
+ split: test
130
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
131
+ metrics:
132
+ - type: v_measure
133
+ value: 42.014046191286525
134
+ - task:
135
+ type: Clustering
136
+ dataset:
137
+ type: mteb/arxiv-clustering-s2s
138
+ name: MTEB ArxivClusteringS2S
139
+ config: default
140
+ split: test
141
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
142
+ metrics:
143
+ - type: v_measure
144
+ value: 31.406159641263052
145
+ - task:
146
+ type: Reranking
147
+ dataset:
148
+ type: mteb/askubuntudupquestions-reranking
149
+ name: MTEB AskUbuntuDupQuestions
150
+ config: default
151
+ split: test
152
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
153
+ metrics:
154
+ - type: map
155
+ value: 60.35266033223575
156
+ - type: mrr
157
+ value: 72.66796376907179
158
+ - task:
159
+ type: Classification
160
+ dataset:
161
+ type: mteb/banking77
162
+ name: MTEB Banking77Classification
163
+ config: default
164
+ split: test
165
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
166
+ metrics:
167
+ - type: accuracy
168
+ value: 74.12337662337661
169
+ - type: f1
170
+ value: 73.12122145084057
171
+ - task:
172
+ type: Clustering
173
+ dataset:
174
+ type: mteb/biorxiv-clustering-p2p
175
+ name: MTEB BiorxivClusteringP2P
176
+ config: default
177
+ split: test
178
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
179
+ metrics:
180
+ - type: v_measure
181
+ value: 34.72513663347855
182
+ - task:
183
+ type: Clustering
184
+ dataset:
185
+ type: mteb/biorxiv-clustering-s2s
186
+ name: MTEB BiorxivClusteringS2S
187
+ config: default
188
+ split: test
189
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
190
+ metrics:
191
+ - type: v_measure
192
+ value: 29.280150859689826
193
+ - task:
194
+ type: Retrieval
195
+ dataset:
196
+ type: BeIR/cqadupstack
197
+ name: MTEB CQADupstackAndroidRetrieval
198
+ config: default
199
+ split: test
200
+ revision: None
201
+ metrics:
202
+ - type: map_at_1
203
+ value: 21.787
204
+ - type: map_at_10
205
+ value: 30.409000000000002
206
+ - type: map_at_100
207
+ value: 31.947
208
+ - type: map_at_1000
209
+ value: 32.09
210
+ - type: map_at_3
211
+ value: 27.214
212
+ - type: map_at_5
213
+ value: 28.810999999999996
214
+ - type: mrr_at_1
215
+ value: 27.039
216
+ - type: mrr_at_10
217
+ value: 35.581
218
+ - type: mrr_at_100
219
+ value: 36.584
220
+ - type: mrr_at_1000
221
+ value: 36.645
222
+ - type: mrr_at_3
223
+ value: 32.713
224
+ - type: mrr_at_5
225
+ value: 34.272999999999996
226
+ - type: ndcg_at_1
227
+ value: 27.039
228
+ - type: ndcg_at_10
229
+ value: 36.157000000000004
230
+ - type: ndcg_at_100
231
+ value: 42.598
232
+ - type: ndcg_at_1000
233
+ value: 45.207
234
+ - type: ndcg_at_3
235
+ value: 30.907
236
+ - type: ndcg_at_5
237
+ value: 33.068
238
+ - type: precision_at_1
239
+ value: 27.039
240
+ - type: precision_at_10
241
+ value: 7.295999999999999
242
+ - type: precision_at_100
243
+ value: 1.303
244
+ - type: precision_at_1000
245
+ value: 0.186
246
+ - type: precision_at_3
247
+ value: 14.926
248
+ - type: precision_at_5
249
+ value: 11.044
250
+ - type: recall_at_1
251
+ value: 21.787
252
+ - type: recall_at_10
253
+ value: 47.693999999999996
254
+ - type: recall_at_100
255
+ value: 75.848
256
+ - type: recall_at_1000
257
+ value: 92.713
258
+ - type: recall_at_3
259
+ value: 32.92
260
+ - type: recall_at_5
261
+ value: 38.794000000000004
262
+ - task:
263
+ type: Retrieval
264
+ dataset:
265
+ type: BeIR/cqadupstack
266
+ name: MTEB CQADupstackEnglishRetrieval
267
+ config: default
268
+ split: test
269
+ revision: None
270
+ metrics:
271
+ - type: map_at_1
272
+ value: 24.560000000000002
273
+ - type: map_at_10
274
+ value: 34.756
275
+ - type: map_at_100
276
+ value: 36.169000000000004
277
+ - type: map_at_1000
278
+ value: 36.298
279
+ - type: map_at_3
280
+ value: 31.592
281
+ - type: map_at_5
282
+ value: 33.426
283
+ - type: mrr_at_1
284
+ value: 31.274
285
+ - type: mrr_at_10
286
+ value: 40.328
287
+ - type: mrr_at_100
288
+ value: 41.125
289
+ - type: mrr_at_1000
290
+ value: 41.171
291
+ - type: mrr_at_3
292
+ value: 37.866
293
+ - type: mrr_at_5
294
+ value: 39.299
295
+ - type: ndcg_at_1
296
+ value: 31.338
297
+ - type: ndcg_at_10
298
+ value: 40.696
299
+ - type: ndcg_at_100
300
+ value: 45.922000000000004
301
+ - type: ndcg_at_1000
302
+ value: 47.982
303
+ - type: ndcg_at_3
304
+ value: 36.116
305
+ - type: ndcg_at_5
306
+ value: 38.324000000000005
307
+ - type: precision_at_1
308
+ value: 31.338
309
+ - type: precision_at_10
310
+ value: 8.083
311
+ - type: precision_at_100
312
+ value: 1.4040000000000001
313
+ - type: precision_at_1000
314
+ value: 0.189
315
+ - type: precision_at_3
316
+ value: 18.089
317
+ - type: precision_at_5
318
+ value: 13.159
319
+ - type: recall_at_1
320
+ value: 24.560000000000002
321
+ - type: recall_at_10
322
+ value: 51.832
323
+ - type: recall_at_100
324
+ value: 74.26899999999999
325
+ - type: recall_at_1000
326
+ value: 87.331
327
+ - type: recall_at_3
328
+ value: 38.086999999999996
329
+ - type: recall_at_5
330
+ value: 44.294
331
+ - task:
332
+ type: Retrieval
333
+ dataset:
334
+ type: BeIR/cqadupstack
335
+ name: MTEB CQADupstackGamingRetrieval
336
+ config: default
337
+ split: test
338
+ revision: None
339
+ metrics:
340
+ - type: map_at_1
341
+ value: 27.256999999999998
342
+ - type: map_at_10
343
+ value: 38.805
344
+ - type: map_at_100
345
+ value: 40.04
346
+ - type: map_at_1000
347
+ value: 40.117000000000004
348
+ - type: map_at_3
349
+ value: 35.425000000000004
350
+ - type: map_at_5
351
+ value: 37.317
352
+ - type: mrr_at_1
353
+ value: 31.912000000000003
354
+ - type: mrr_at_10
355
+ value: 42.045
356
+ - type: mrr_at_100
357
+ value: 42.956
358
+ - type: mrr_at_1000
359
+ value: 43.004
360
+ - type: mrr_at_3
361
+ value: 39.195
362
+ - type: mrr_at_5
363
+ value: 40.866
364
+ - type: ndcg_at_1
365
+ value: 31.912000000000003
366
+ - type: ndcg_at_10
367
+ value: 44.826
368
+ - type: ndcg_at_100
369
+ value: 49.85
370
+ - type: ndcg_at_1000
371
+ value: 51.562
372
+ - type: ndcg_at_3
373
+ value: 38.845
374
+ - type: ndcg_at_5
375
+ value: 41.719
376
+ - type: precision_at_1
377
+ value: 31.912000000000003
378
+ - type: precision_at_10
379
+ value: 7.768
380
+ - type: precision_at_100
381
+ value: 1.115
382
+ - type: precision_at_1000
383
+ value: 0.131
384
+ - type: precision_at_3
385
+ value: 18.015
386
+ - type: precision_at_5
387
+ value: 12.814999999999998
388
+ - type: recall_at_1
389
+ value: 27.256999999999998
390
+ - type: recall_at_10
391
+ value: 59.611999999999995
392
+ - type: recall_at_100
393
+ value: 81.324
394
+ - type: recall_at_1000
395
+ value: 93.801
396
+ - type: recall_at_3
397
+ value: 43.589
398
+ - type: recall_at_5
399
+ value: 50.589
400
+ - task:
401
+ type: Retrieval
402
+ dataset:
403
+ type: BeIR/cqadupstack
404
+ name: MTEB CQADupstackGisRetrieval
405
+ config: default
406
+ split: test
407
+ revision: None
408
+ metrics:
409
+ - type: map_at_1
410
+ value: 15.588
411
+ - type: map_at_10
412
+ value: 22.936999999999998
413
+ - type: map_at_100
414
+ value: 24.015
415
+ - type: map_at_1000
416
+ value: 24.127000000000002
417
+ - type: map_at_3
418
+ value: 20.47
419
+ - type: map_at_5
420
+ value: 21.799
421
+ - type: mrr_at_1
422
+ value: 16.723
423
+ - type: mrr_at_10
424
+ value: 24.448
425
+ - type: mrr_at_100
426
+ value: 25.482
427
+ - type: mrr_at_1000
428
+ value: 25.568999999999996
429
+ - type: mrr_at_3
430
+ value: 21.94
431
+ - type: mrr_at_5
432
+ value: 23.386000000000003
433
+ - type: ndcg_at_1
434
+ value: 16.723
435
+ - type: ndcg_at_10
436
+ value: 27.451999999999998
437
+ - type: ndcg_at_100
438
+ value: 33.182
439
+ - type: ndcg_at_1000
440
+ value: 36.193999999999996
441
+ - type: ndcg_at_3
442
+ value: 22.545
443
+ - type: ndcg_at_5
444
+ value: 24.837
445
+ - type: precision_at_1
446
+ value: 16.723
447
+ - type: precision_at_10
448
+ value: 4.5760000000000005
449
+ - type: precision_at_100
450
+ value: 0.7929999999999999
451
+ - type: precision_at_1000
452
+ value: 0.11
453
+ - type: precision_at_3
454
+ value: 9.944
455
+ - type: precision_at_5
456
+ value: 7.321999999999999
457
+ - type: recall_at_1
458
+ value: 15.588
459
+ - type: recall_at_10
460
+ value: 40.039
461
+ - type: recall_at_100
462
+ value: 67.17699999999999
463
+ - type: recall_at_1000
464
+ value: 90.181
465
+ - type: recall_at_3
466
+ value: 26.663999999999998
467
+ - type: recall_at_5
468
+ value: 32.144
469
+ - task:
470
+ type: Retrieval
471
+ dataset:
472
+ type: BeIR/cqadupstack
473
+ name: MTEB CQADupstackMathematicaRetrieval
474
+ config: default
475
+ split: test
476
+ revision: None
477
+ metrics:
478
+ - type: map_at_1
479
+ value: 12.142999999999999
480
+ - type: map_at_10
481
+ value: 18.355
482
+ - type: map_at_100
483
+ value: 19.611
484
+ - type: map_at_1000
485
+ value: 19.750999999999998
486
+ - type: map_at_3
487
+ value: 16.073999999999998
488
+ - type: map_at_5
489
+ value: 17.187
490
+ - type: mrr_at_1
491
+ value: 15.547
492
+ - type: mrr_at_10
493
+ value: 22.615
494
+ - type: mrr_at_100
495
+ value: 23.671
496
+ - type: mrr_at_1000
497
+ value: 23.759
498
+ - type: mrr_at_3
499
+ value: 20.149
500
+ - type: mrr_at_5
501
+ value: 21.437
502
+ - type: ndcg_at_1
503
+ value: 15.547
504
+ - type: ndcg_at_10
505
+ value: 22.985
506
+ - type: ndcg_at_100
507
+ value: 29.192
508
+ - type: ndcg_at_1000
509
+ value: 32.448
510
+ - type: ndcg_at_3
511
+ value: 18.503
512
+ - type: ndcg_at_5
513
+ value: 20.322000000000003
514
+ - type: precision_at_1
515
+ value: 15.547
516
+ - type: precision_at_10
517
+ value: 4.49
518
+ - type: precision_at_100
519
+ value: 0.8840000000000001
520
+ - type: precision_at_1000
521
+ value: 0.129
522
+ - type: precision_at_3
523
+ value: 8.872
524
+ - type: precision_at_5
525
+ value: 6.741
526
+ - type: recall_at_1
527
+ value: 12.142999999999999
528
+ - type: recall_at_10
529
+ value: 33.271
530
+ - type: recall_at_100
531
+ value: 60.95399999999999
532
+ - type: recall_at_1000
533
+ value: 83.963
534
+ - type: recall_at_3
535
+ value: 20.645
536
+ - type: recall_at_5
537
+ value: 25.34
538
+ - task:
539
+ type: Retrieval
540
+ dataset:
541
+ type: BeIR/cqadupstack
542
+ name: MTEB CQADupstackPhysicsRetrieval
543
+ config: default
544
+ split: test
545
+ revision: None
546
+ metrics:
547
+ - type: map_at_1
548
+ value: 22.09
549
+ - type: map_at_10
550
+ value: 30.220000000000002
551
+ - type: map_at_100
552
+ value: 31.741999999999997
553
+ - type: map_at_1000
554
+ value: 31.878
555
+ - type: map_at_3
556
+ value: 27.455000000000002
557
+ - type: map_at_5
558
+ value: 28.808
559
+ - type: mrr_at_1
560
+ value: 27.718999999999998
561
+ - type: mrr_at_10
562
+ value: 35.476
563
+ - type: mrr_at_100
564
+ value: 36.53
565
+ - type: mrr_at_1000
566
+ value: 36.602000000000004
567
+ - type: mrr_at_3
568
+ value: 33.157
569
+ - type: mrr_at_5
570
+ value: 34.36
571
+ - type: ndcg_at_1
572
+ value: 27.718999999999998
573
+ - type: ndcg_at_10
574
+ value: 35.547000000000004
575
+ - type: ndcg_at_100
576
+ value: 42.079
577
+ - type: ndcg_at_1000
578
+ value: 44.861000000000004
579
+ - type: ndcg_at_3
580
+ value: 30.932
581
+ - type: ndcg_at_5
582
+ value: 32.748
583
+ - type: precision_at_1
584
+ value: 27.718999999999998
585
+ - type: precision_at_10
586
+ value: 6.795
587
+ - type: precision_at_100
588
+ value: 1.194
589
+ - type: precision_at_1000
590
+ value: 0.163
591
+ - type: precision_at_3
592
+ value: 14.758
593
+ - type: precision_at_5
594
+ value: 10.549
595
+ - type: recall_at_1
596
+ value: 22.09
597
+ - type: recall_at_10
598
+ value: 46.357
599
+ - type: recall_at_100
600
+ value: 74.002
601
+ - type: recall_at_1000
602
+ value: 92.99199999999999
603
+ - type: recall_at_3
604
+ value: 33.138
605
+ - type: recall_at_5
606
+ value: 38.034
607
+ - task:
608
+ type: Retrieval
609
+ dataset:
610
+ type: BeIR/cqadupstack
611
+ name: MTEB CQADupstackProgrammersRetrieval
612
+ config: default
613
+ split: test
614
+ revision: None
615
+ metrics:
616
+ - type: map_at_1
617
+ value: 16.904
618
+ - type: map_at_10
619
+ value: 25.075999999999997
620
+ - type: map_at_100
621
+ value: 26.400000000000002
622
+ - type: map_at_1000
623
+ value: 26.525
624
+ - type: map_at_3
625
+ value: 22.191
626
+ - type: map_at_5
627
+ value: 23.947
628
+ - type: mrr_at_1
629
+ value: 21.461
630
+ - type: mrr_at_10
631
+ value: 29.614
632
+ - type: mrr_at_100
633
+ value: 30.602
634
+ - type: mrr_at_1000
635
+ value: 30.677
636
+ - type: mrr_at_3
637
+ value: 27.017000000000003
638
+ - type: mrr_at_5
639
+ value: 28.626
640
+ - type: ndcg_at_1
641
+ value: 21.461
642
+ - type: ndcg_at_10
643
+ value: 30.304
644
+ - type: ndcg_at_100
645
+ value: 36.521
646
+ - type: ndcg_at_1000
647
+ value: 39.366
648
+ - type: ndcg_at_3
649
+ value: 25.267
650
+ - type: ndcg_at_5
651
+ value: 27.918
652
+ - type: precision_at_1
653
+ value: 21.461
654
+ - type: precision_at_10
655
+ value: 5.868
656
+ - type: precision_at_100
657
+ value: 1.072
658
+ - type: precision_at_1000
659
+ value: 0.151
660
+ - type: precision_at_3
661
+ value: 12.291
662
+ - type: precision_at_5
663
+ value: 9.429
664
+ - type: recall_at_1
665
+ value: 16.904
666
+ - type: recall_at_10
667
+ value: 41.521
668
+ - type: recall_at_100
669
+ value: 68.919
670
+ - type: recall_at_1000
671
+ value: 88.852
672
+ - type: recall_at_3
673
+ value: 27.733999999999998
674
+ - type: recall_at_5
675
+ value: 34.439
676
+ - task:
677
+ type: Retrieval
678
+ dataset:
679
+ type: BeIR/cqadupstack
680
+ name: MTEB CQADupstackRetrieval
681
+ config: default
682
+ split: test
683
+ revision: None
684
+ metrics:
685
+ - type: map_at_1
686
+ value: 18.327916666666667
687
+ - type: map_at_10
688
+ value: 26.068
689
+ - type: map_at_100
690
+ value: 27.358833333333333
691
+ - type: map_at_1000
692
+ value: 27.491583333333335
693
+ - type: map_at_3
694
+ value: 23.45508333333333
695
+ - type: map_at_5
696
+ value: 24.857916666666664
697
+ - type: mrr_at_1
698
+ value: 22.05066666666667
699
+ - type: mrr_at_10
700
+ value: 29.805083333333332
701
+ - type: mrr_at_100
702
+ value: 30.80283333333333
703
+ - type: mrr_at_1000
704
+ value: 30.876166666666666
705
+ - type: mrr_at_3
706
+ value: 27.381083333333333
707
+ - type: mrr_at_5
708
+ value: 28.72441666666667
709
+ - type: ndcg_at_1
710
+ value: 22.056000000000004
711
+ - type: ndcg_at_10
712
+ value: 31.029416666666666
713
+ - type: ndcg_at_100
714
+ value: 36.90174999999999
715
+ - type: ndcg_at_1000
716
+ value: 39.716249999999995
717
+ - type: ndcg_at_3
718
+ value: 26.35533333333333
719
+ - type: ndcg_at_5
720
+ value: 28.471500000000006
721
+ - type: precision_at_1
722
+ value: 22.056000000000004
723
+ - type: precision_at_10
724
+ value: 5.7645833333333325
725
+ - type: precision_at_100
726
+ value: 1.0406666666666666
727
+ - type: precision_at_1000
728
+ value: 0.14850000000000002
729
+ - type: precision_at_3
730
+ value: 12.391416666666666
731
+ - type: precision_at_5
732
+ value: 9.112499999999999
733
+ - type: recall_at_1
734
+ value: 18.327916666666667
735
+ - type: recall_at_10
736
+ value: 42.15083333333333
737
+ - type: recall_at_100
738
+ value: 68.38666666666666
739
+ - type: recall_at_1000
740
+ value: 88.24183333333333
741
+ - type: recall_at_3
742
+ value: 29.094416666666667
743
+ - type: recall_at_5
744
+ value: 34.48716666666666
745
+ - task:
746
+ type: Retrieval
747
+ dataset:
748
+ type: BeIR/cqadupstack
749
+ name: MTEB CQADupstackStatsRetrieval
750
+ config: default
751
+ split: test
752
+ revision: None
753
+ metrics:
754
+ - type: map_at_1
755
+ value: 15.009
756
+ - type: map_at_10
757
+ value: 21.251
758
+ - type: map_at_100
759
+ value: 22.337
760
+ - type: map_at_1000
761
+ value: 22.455
762
+ - type: map_at_3
763
+ value: 19.241
764
+ - type: map_at_5
765
+ value: 20.381
766
+ - type: mrr_at_1
767
+ value: 17.638
768
+ - type: mrr_at_10
769
+ value: 24.184
770
+ - type: mrr_at_100
771
+ value: 25.156
772
+ - type: mrr_at_1000
773
+ value: 25.239
774
+ - type: mrr_at_3
775
+ value: 22.29
776
+ - type: mrr_at_5
777
+ value: 23.363999999999997
778
+ - type: ndcg_at_1
779
+ value: 17.638
780
+ - type: ndcg_at_10
781
+ value: 25.269000000000002
782
+ - type: ndcg_at_100
783
+ value: 30.781999999999996
784
+ - type: ndcg_at_1000
785
+ value: 33.757
786
+ - type: ndcg_at_3
787
+ value: 21.457
788
+ - type: ndcg_at_5
789
+ value: 23.293
790
+ - type: precision_at_1
791
+ value: 17.638
792
+ - type: precision_at_10
793
+ value: 4.294
794
+ - type: precision_at_100
795
+ value: 0.771
796
+ - type: precision_at_1000
797
+ value: 0.11100000000000002
798
+ - type: precision_at_3
799
+ value: 9.815999999999999
800
+ - type: precision_at_5
801
+ value: 7.086
802
+ - type: recall_at_1
803
+ value: 15.009
804
+ - type: recall_at_10
805
+ value: 35.014
806
+ - type: recall_at_100
807
+ value: 60.45399999999999
808
+ - type: recall_at_1000
809
+ value: 82.416
810
+ - type: recall_at_3
811
+ value: 24.131
812
+ - type: recall_at_5
813
+ value: 28.846
814
+ - task:
815
+ type: Retrieval
816
+ dataset:
817
+ type: BeIR/cqadupstack
818
+ name: MTEB CQADupstackTexRetrieval
819
+ config: default
820
+ split: test
821
+ revision: None
822
+ metrics:
823
+ - type: map_at_1
824
+ value: 12.518
825
+ - type: map_at_10
826
+ value: 18.226
827
+ - type: map_at_100
828
+ value: 19.355
829
+ - type: map_at_1000
830
+ value: 19.496
831
+ - type: map_at_3
832
+ value: 16.243
833
+ - type: map_at_5
834
+ value: 17.288999999999998
835
+ - type: mrr_at_1
836
+ value: 15.382000000000001
837
+ - type: mrr_at_10
838
+ value: 21.559
839
+ - type: mrr_at_100
840
+ value: 22.587
841
+ - type: mrr_at_1000
842
+ value: 22.677
843
+ - type: mrr_at_3
844
+ value: 19.597
845
+ - type: mrr_at_5
846
+ value: 20.585
847
+ - type: ndcg_at_1
848
+ value: 15.382000000000001
849
+ - type: ndcg_at_10
850
+ value: 22.198
851
+ - type: ndcg_at_100
852
+ value: 27.860000000000003
853
+ - type: ndcg_at_1000
854
+ value: 31.302999999999997
855
+ - type: ndcg_at_3
856
+ value: 18.541
857
+ - type: ndcg_at_5
858
+ value: 20.089000000000002
859
+ - type: precision_at_1
860
+ value: 15.382000000000001
861
+ - type: precision_at_10
862
+ value: 4.178
863
+ - type: precision_at_100
864
+ value: 0.8380000000000001
865
+ - type: precision_at_1000
866
+ value: 0.132
867
+ - type: precision_at_3
868
+ value: 8.866999999999999
869
+ - type: precision_at_5
870
+ value: 6.476
871
+ - type: recall_at_1
872
+ value: 12.518
873
+ - type: recall_at_10
874
+ value: 31.036
875
+ - type: recall_at_100
876
+ value: 56.727000000000004
877
+ - type: recall_at_1000
878
+ value: 81.66799999999999
879
+ - type: recall_at_3
880
+ value: 20.610999999999997
881
+ - type: recall_at_5
882
+ value: 24.744
883
+ - task:
884
+ type: Retrieval
885
+ dataset:
886
+ type: BeIR/cqadupstack
887
+ name: MTEB CQADupstackUnixRetrieval
888
+ config: default
889
+ split: test
890
+ revision: None
891
+ metrics:
892
+ - type: map_at_1
893
+ value: 18.357
894
+ - type: map_at_10
895
+ value: 25.384
896
+ - type: map_at_100
897
+ value: 26.640000000000004
898
+ - type: map_at_1000
899
+ value: 26.762999999999998
900
+ - type: map_at_3
901
+ value: 22.863
902
+ - type: map_at_5
903
+ value: 24.197
904
+ - type: mrr_at_1
905
+ value: 21.735
906
+ - type: mrr_at_10
907
+ value: 29.069
908
+ - type: mrr_at_100
909
+ value: 30.119
910
+ - type: mrr_at_1000
911
+ value: 30.194
912
+ - type: mrr_at_3
913
+ value: 26.663999999999998
914
+ - type: mrr_at_5
915
+ value: 27.904
916
+ - type: ndcg_at_1
917
+ value: 21.735
918
+ - type: ndcg_at_10
919
+ value: 30.153999999999996
920
+ - type: ndcg_at_100
921
+ value: 36.262
922
+ - type: ndcg_at_1000
923
+ value: 39.206
924
+ - type: ndcg_at_3
925
+ value: 25.365
926
+ - type: ndcg_at_5
927
+ value: 27.403
928
+ - type: precision_at_1
929
+ value: 21.735
930
+ - type: precision_at_10
931
+ value: 5.354
932
+ - type: precision_at_100
933
+ value: 0.958
934
+ - type: precision_at_1000
935
+ value: 0.134
936
+ - type: precision_at_3
937
+ value: 11.567
938
+ - type: precision_at_5
939
+ value: 8.469999999999999
940
+ - type: recall_at_1
941
+ value: 18.357
942
+ - type: recall_at_10
943
+ value: 41.205000000000005
944
+ - type: recall_at_100
945
+ value: 68.30000000000001
946
+ - type: recall_at_1000
947
+ value: 89.294
948
+ - type: recall_at_3
949
+ value: 27.969
950
+ - type: recall_at_5
951
+ value: 32.989000000000004
952
+ - task:
953
+ type: Retrieval
954
+ dataset:
955
+ type: BeIR/cqadupstack
956
+ name: MTEB CQADupstackWebmastersRetrieval
957
+ config: default
958
+ split: test
959
+ revision: None
960
+ metrics:
961
+ - type: map_at_1
962
+ value: 18.226
963
+ - type: map_at_10
964
+ value: 25.766
965
+ - type: map_at_100
966
+ value: 27.345000000000002
967
+ - type: map_at_1000
968
+ value: 27.575
969
+ - type: map_at_3
970
+ value: 22.945999999999998
971
+ - type: map_at_5
972
+ value: 24.383
973
+ - type: mrr_at_1
974
+ value: 21.542
975
+ - type: mrr_at_10
976
+ value: 29.448
977
+ - type: mrr_at_100
978
+ value: 30.509999999999998
979
+ - type: mrr_at_1000
980
+ value: 30.575000000000003
981
+ - type: mrr_at_3
982
+ value: 26.482
983
+ - type: mrr_at_5
984
+ value: 28.072999999999997
985
+ - type: ndcg_at_1
986
+ value: 21.542
987
+ - type: ndcg_at_10
988
+ value: 31.392999999999997
989
+ - type: ndcg_at_100
990
+ value: 37.589
991
+ - type: ndcg_at_1000
992
+ value: 40.717
993
+ - type: ndcg_at_3
994
+ value: 26.179000000000002
995
+ - type: ndcg_at_5
996
+ value: 28.557
997
+ - type: precision_at_1
998
+ value: 21.542
999
+ - type: precision_at_10
1000
+ value: 6.462
1001
+ - type: precision_at_100
1002
+ value: 1.415
1003
+ - type: precision_at_1000
1004
+ value: 0.234
1005
+ - type: precision_at_3
1006
+ value: 12.187000000000001
1007
+ - type: precision_at_5
1008
+ value: 9.605
1009
+ - type: recall_at_1
1010
+ value: 18.226
1011
+ - type: recall_at_10
1012
+ value: 42.853
1013
+ - type: recall_at_100
1014
+ value: 70.97200000000001
1015
+ - type: recall_at_1000
1016
+ value: 91.662
1017
+ - type: recall_at_3
1018
+ value: 28.555999999999997
1019
+ - type: recall_at_5
1020
+ value: 34.203
1021
+ - task:
1022
+ type: Retrieval
1023
+ dataset:
1024
+ type: BeIR/cqadupstack
1025
+ name: MTEB CQADupstackWordpressRetrieval
1026
+ config: default
1027
+ split: test
1028
+ revision: None
1029
+ metrics:
1030
+ - type: map_at_1
1031
+ value: 15.495999999999999
1032
+ - type: map_at_10
1033
+ value: 21.631
1034
+ - type: map_at_100
1035
+ value: 22.705000000000002
1036
+ - type: map_at_1000
1037
+ value: 22.823999999999998
1038
+ - type: map_at_3
1039
+ value: 19.747
1040
+ - type: map_at_5
1041
+ value: 20.75
1042
+ - type: mrr_at_1
1043
+ value: 16.636
1044
+ - type: mrr_at_10
1045
+ value: 23.294
1046
+ - type: mrr_at_100
1047
+ value: 24.312
1048
+ - type: mrr_at_1000
1049
+ value: 24.401999999999997
1050
+ - type: mrr_at_3
1051
+ value: 21.503
1052
+ - type: mrr_at_5
1053
+ value: 22.52
1054
+ - type: ndcg_at_1
1055
+ value: 16.636
1056
+ - type: ndcg_at_10
1057
+ value: 25.372
1058
+ - type: ndcg_at_100
1059
+ value: 30.984
1060
+ - type: ndcg_at_1000
1061
+ value: 33.992
1062
+ - type: ndcg_at_3
1063
+ value: 21.607000000000003
1064
+ - type: ndcg_at_5
1065
+ value: 23.380000000000003
1066
+ - type: precision_at_1
1067
+ value: 16.636
1068
+ - type: precision_at_10
1069
+ value: 4.011
1070
+ - type: precision_at_100
1071
+ value: 0.741
1072
+ - type: precision_at_1000
1073
+ value: 0.11199999999999999
1074
+ - type: precision_at_3
1075
+ value: 9.365
1076
+ - type: precision_at_5
1077
+ value: 6.654
1078
+ - type: recall_at_1
1079
+ value: 15.495999999999999
1080
+ - type: recall_at_10
1081
+ value: 35.376000000000005
1082
+ - type: recall_at_100
1083
+ value: 61.694
1084
+ - type: recall_at_1000
1085
+ value: 84.029
1086
+ - type: recall_at_3
1087
+ value: 25.089
1088
+ - type: recall_at_5
1089
+ value: 29.43
1090
+ - task:
1091
+ type: Retrieval
1092
+ dataset:
1093
+ type: climate-fever
1094
+ name: MTEB ClimateFEVER
1095
+ config: default
1096
+ split: test
1097
+ revision: None
1098
+ metrics:
1099
+ - type: map_at_1
1100
+ value: 4.662
1101
+ - type: map_at_10
1102
+ value: 8.638
1103
+ - type: map_at_100
1104
+ value: 9.86
1105
+ - type: map_at_1000
1106
+ value: 10.032
1107
+ - type: map_at_3
1108
+ value: 6.793
1109
+ - type: map_at_5
1110
+ value: 7.761
1111
+ - type: mrr_at_1
1112
+ value: 10.684000000000001
1113
+ - type: mrr_at_10
1114
+ value: 17.982
1115
+ - type: mrr_at_100
1116
+ value: 19.152
1117
+ - type: mrr_at_1000
1118
+ value: 19.231
1119
+ - type: mrr_at_3
1120
+ value: 15.113999999999999
1121
+ - type: mrr_at_5
1122
+ value: 16.658
1123
+ - type: ndcg_at_1
1124
+ value: 10.684000000000001
1125
+ - type: ndcg_at_10
1126
+ value: 13.483
1127
+ - type: ndcg_at_100
1128
+ value: 19.48
1129
+ - type: ndcg_at_1000
1130
+ value: 23.232
1131
+ - type: ndcg_at_3
1132
+ value: 9.75
1133
+ - type: ndcg_at_5
1134
+ value: 11.208
1135
+ - type: precision_at_1
1136
+ value: 10.684000000000001
1137
+ - type: precision_at_10
1138
+ value: 4.573
1139
+ - type: precision_at_100
1140
+ value: 1.085
1141
+ - type: precision_at_1000
1142
+ value: 0.17600000000000002
1143
+ - type: precision_at_3
1144
+ value: 7.514
1145
+ - type: precision_at_5
1146
+ value: 6.241
1147
+ - type: recall_at_1
1148
+ value: 4.662
1149
+ - type: recall_at_10
1150
+ value: 18.125
1151
+ - type: recall_at_100
1152
+ value: 39.675
1153
+ - type: recall_at_1000
1154
+ value: 61.332
1155
+ - type: recall_at_3
1156
+ value: 9.239
1157
+ - type: recall_at_5
1158
+ value: 12.863
1159
+ - task:
1160
+ type: Retrieval
1161
+ dataset:
1162
+ type: dbpedia-entity
1163
+ name: MTEB DBPedia
1164
+ config: default
1165
+ split: test
1166
+ revision: None
1167
+ metrics:
1168
+ - type: map_at_1
1169
+ value: 3.869
1170
+ - type: map_at_10
1171
+ value: 8.701
1172
+ - type: map_at_100
1173
+ value: 11.806999999999999
1174
+ - type: map_at_1000
1175
+ value: 12.676000000000002
1176
+ - type: map_at_3
1177
+ value: 6.3100000000000005
1178
+ - type: map_at_5
1179
+ value: 7.471
1180
+ - type: mrr_at_1
1181
+ value: 38.5
1182
+ - type: mrr_at_10
1183
+ value: 48.754
1184
+ - type: mrr_at_100
1185
+ value: 49.544
1186
+ - type: mrr_at_1000
1187
+ value: 49.568
1188
+ - type: mrr_at_3
1189
+ value: 46.167
1190
+ - type: mrr_at_5
1191
+ value: 47.679
1192
+ - type: ndcg_at_1
1193
+ value: 30.5
1194
+ - type: ndcg_at_10
1195
+ value: 22.454
1196
+ - type: ndcg_at_100
1197
+ value: 25.380999999999997
1198
+ - type: ndcg_at_1000
1199
+ value: 31.582
1200
+ - type: ndcg_at_3
1201
+ value: 25.617
1202
+ - type: ndcg_at_5
1203
+ value: 24.254
1204
+ - type: precision_at_1
1205
+ value: 38.5
1206
+ - type: precision_at_10
1207
+ value: 18.4
1208
+ - type: precision_at_100
1209
+ value: 6.02
1210
+ - type: precision_at_1000
1211
+ value: 1.34
1212
+ - type: precision_at_3
1213
+ value: 29.083
1214
+ - type: precision_at_5
1215
+ value: 24.85
1216
+ - type: recall_at_1
1217
+ value: 3.869
1218
+ - type: recall_at_10
1219
+ value: 12.902
1220
+ - type: recall_at_100
1221
+ value: 30.496000000000002
1222
+ - type: recall_at_1000
1223
+ value: 51.066
1224
+ - type: recall_at_3
1225
+ value: 7.396
1226
+ - type: recall_at_5
1227
+ value: 9.852
1228
+ - task:
1229
+ type: Classification
1230
+ dataset:
1231
+ type: mteb/emotion
1232
+ name: MTEB EmotionClassification
1233
+ config: default
1234
+ split: test
1235
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1236
+ metrics:
1237
+ - type: accuracy
1238
+ value: 36.705000000000005
1239
+ - type: f1
1240
+ value: 32.72625967901387
1241
+ - task:
1242
+ type: Classification
1243
+ dataset:
1244
+ type: mteb/imdb
1245
+ name: MTEB ImdbClassification
1246
+ config: default
1247
+ split: test
1248
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1249
+ metrics:
1250
+ - type: accuracy
1251
+ value: 66.89840000000001
1252
+ - type: ap
1253
+ value: 61.43175045563333
1254
+ - type: f1
1255
+ value: 66.67945656405962
1256
+ - task:
1257
+ type: Classification
1258
+ dataset:
1259
+ type: mteb/mtop_domain
1260
+ name: MTEB MTOPDomainClassification (en)
1261
+ config: en
1262
+ split: test
1263
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1264
+ metrics:
1265
+ - type: accuracy
1266
+ value: 89.12676698586411
1267
+ - type: f1
1268
+ value: 88.48426641357668
1269
+ - task:
1270
+ type: Classification
1271
+ dataset:
1272
+ type: mteb/mtop_intent
1273
+ name: MTEB MTOPIntentClassification (en)
1274
+ config: en
1275
+ split: test
1276
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1277
+ metrics:
1278
+ - type: accuracy
1279
+ value: 62.61513907888736
1280
+ - type: f1
1281
+ value: 40.96251281624023
1282
+ - task:
1283
+ type: Classification
1284
+ dataset:
1285
+ type: mteb/amazon_massive_intent
1286
+ name: MTEB MassiveIntentClassification (en)
1287
+ config: en
1288
+ split: test
1289
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1290
+ metrics:
1291
+ - type: accuracy
1292
+ value: 61.95359784801614
1293
+ - type: f1
1294
+ value: 58.85654625260125
1295
+ - task:
1296
+ type: Classification
1297
+ dataset:
1298
+ type: mteb/amazon_massive_scenario
1299
+ name: MTEB MassiveScenarioClassification (en)
1300
+ config: en
1301
+ split: test
1302
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1303
+ metrics:
1304
+ - type: accuracy
1305
+ value: 70.1983860121049
1306
+ - type: f1
1307
+ value: 68.73455379435487
1308
+ - task:
1309
+ type: Clustering
1310
+ dataset:
1311
+ type: mteb/medrxiv-clustering-p2p
1312
+ name: MTEB MedrxivClusteringP2P
1313
+ config: default
1314
+ split: test
1315
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1316
+ metrics:
1317
+ - type: v_measure
1318
+ value: 31.772017072895846
1319
+ - task:
1320
+ type: Clustering
1321
+ dataset:
1322
+ type: mteb/medrxiv-clustering-s2s
1323
+ name: MTEB MedrxivClusteringS2S
1324
+ config: default
1325
+ split: test
1326
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1327
+ metrics:
1328
+ - type: v_measure
1329
+ value: 30.944581802089044
1330
+ - task:
1331
+ type: Reranking
1332
+ dataset:
1333
+ type: mteb/mind_small
1334
+ name: MTEB MindSmallReranking
1335
+ config: default
1336
+ split: test
1337
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1338
+ metrics:
1339
+ - type: map
1340
+ value: 30.977328237697133
1341
+ - type: mrr
1342
+ value: 32.02612207306447
1343
+ - task:
1344
+ type: Clustering
1345
+ dataset:
1346
+ type: mteb/reddit-clustering
1347
+ name: MTEB RedditClustering
1348
+ config: default
1349
+ split: test
1350
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1351
+ metrics:
1352
+ - type: v_measure
1353
+ value: 43.08588418858767
1354
+ - task:
1355
+ type: Clustering
1356
+ dataset:
1357
+ type: mteb/reddit-clustering-p2p
1358
+ name: MTEB RedditClusteringP2P
1359
+ config: default
1360
+ split: test
1361
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1362
+ metrics:
1363
+ - type: v_measure
1364
+ value: 56.53785276450797
1365
+ - task:
1366
+ type: Reranking
1367
+ dataset:
1368
+ type: mteb/scidocs-reranking
1369
+ name: MTEB SciDocsRR
1370
+ config: default
1371
+ split: test
1372
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
1373
+ metrics:
1374
+ - type: map
1375
+ value: 81.44882719207659
1376
+ - type: mrr
1377
+ value: 94.71082022552609
1378
+ - task:
1379
+ type: PairClassification
1380
+ dataset:
1381
+ type: mteb/sprintduplicatequestions-pairclassification
1382
+ name: MTEB SprintDuplicateQuestions
1383
+ config: default
1384
+ split: test
1385
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
1386
+ metrics:
1387
+ - type: cos_sim_accuracy
1388
+ value: 99.77821782178218
1389
+ - type: cos_sim_ap
1390
+ value: 93.22909989796688
1391
+ - type: cos_sim_f1
1392
+ value: 88.41778697001035
1393
+ - type: cos_sim_precision
1394
+ value: 91.54175588865097
1395
+ - type: cos_sim_recall
1396
+ value: 85.5
1397
+ - type: dot_accuracy
1398
+ value: 99.77821782178218
1399
+ - type: dot_ap
1400
+ value: 93.2290998979669
1401
+ - type: dot_f1
1402
+ value: 88.41778697001035
1403
+ - type: dot_precision
1404
+ value: 91.54175588865097
1405
+ - type: dot_recall
1406
+ value: 85.5
1407
+ - type: euclidean_accuracy
1408
+ value: 99.77821782178218
1409
+ - type: euclidean_ap
1410
+ value: 93.2290998979669
1411
+ - type: euclidean_f1
1412
+ value: 88.41778697001035
1413
+ - type: euclidean_precision
1414
+ value: 91.54175588865097
1415
+ - type: euclidean_recall
1416
+ value: 85.5
1417
+ - type: manhattan_accuracy
1418
+ value: 99.77524752475247
1419
+ - type: manhattan_ap
1420
+ value: 93.18492132451668
1421
+ - type: manhattan_f1
1422
+ value: 88.19552782111285
1423
+ - type: manhattan_precision
1424
+ value: 91.87432286023835
1425
+ - type: manhattan_recall
1426
+ value: 84.8
1427
+ - type: max_accuracy
1428
+ value: 99.77821782178218
1429
+ - type: max_ap
1430
+ value: 93.2290998979669
1431
+ - type: max_f1
1432
+ value: 88.41778697001035
1433
+ - task:
1434
+ type: Clustering
1435
+ dataset:
1436
+ type: mteb/stackexchange-clustering
1437
+ name: MTEB StackExchangeClustering
1438
+ config: default
1439
+ split: test
1440
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
1441
+ metrics:
1442
+ - type: v_measure
1443
+ value: 48.225188905490285
1444
+ - task:
1445
+ type: Clustering
1446
+ dataset:
1447
+ type: mteb/stackexchange-clustering-p2p
1448
+ name: MTEB StackExchangeClusteringP2P
1449
+ config: default
1450
+ split: test
1451
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
1452
+ metrics:
1453
+ - type: v_measure
1454
+ value: 34.76195959924048
1455
+ - task:
1456
+ type: Reranking
1457
+ dataset:
1458
+ type: mteb/stackoverflowdupquestions-reranking
1459
+ name: MTEB StackOverflowDupQuestions
1460
+ config: default
1461
+ split: test
1462
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
1463
+ metrics:
1464
+ - type: map
1465
+ value: 48.16986372261003
1466
+ - type: mrr
1467
+ value: 48.7718837535014
1468
+ - task:
1469
+ type: Classification
1470
+ dataset:
1471
+ type: mteb/toxic_conversations_50k
1472
+ name: MTEB ToxicConversationsClassification
1473
+ config: default
1474
+ split: test
1475
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
1476
+ metrics:
1477
+ - type: accuracy
1478
+ value: 63.567200000000014
1479
+ - type: ap
1480
+ value: 11.412292644030266
1481
+ - type: f1
1482
+ value: 49.102043399207716
1483
+ - task:
1484
+ type: Classification
1485
+ dataset:
1486
+ type: mteb/tweet_sentiment_extraction
1487
+ name: MTEB TweetSentimentExtractionClassification
1488
+ config: default
1489
+ split: test
1490
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
1491
+ metrics:
1492
+ - type: accuracy
1493
+ value: 51.04414261460101
1494
+ - type: f1
1495
+ value: 51.22880449155832
1496
+ - task:
1497
+ type: Clustering
1498
+ dataset:
1499
+ type: mteb/twentynewsgroups-clustering
1500
+ name: MTEB TwentyNewsgroupsClustering
1501
+ config: default
1502
+ split: test
1503
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
1504
+ metrics:
1505
+ - type: v_measure
1506
+ value: 34.35595440606073
1507
+ - task:
1508
+ type: PairClassification
1509
+ dataset:
1510
+ type: mteb/twittersemeval2015-pairclassification
1511
+ name: MTEB TwitterSemEval2015
1512
+ config: default
1513
+ split: test
1514
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
1515
+ metrics:
1516
+ - type: cos_sim_accuracy
1517
+ value: 84.6754485307266
1518
+ - type: cos_sim_ap
1519
+ value: 69.6007143804539
1520
+ - type: cos_sim_f1
1521
+ value: 65.99822312476202
1522
+ - type: cos_sim_precision
1523
+ value: 63.58522866226461
1524
+ - type: cos_sim_recall
1525
+ value: 68.60158311345647
1526
+ - type: dot_accuracy
1527
+ value: 84.6754485307266
1528
+ - type: dot_ap
1529
+ value: 69.60070881520775
1530
+ - type: dot_f1
1531
+ value: 65.99822312476202
1532
+ - type: dot_precision
1533
+ value: 63.58522866226461
1534
+ - type: dot_recall
1535
+ value: 68.60158311345647
1536
+ - type: euclidean_accuracy
1537
+ value: 84.6754485307266
1538
+ - type: euclidean_ap
1539
+ value: 69.60071394457518
1540
+ - type: euclidean_f1
1541
+ value: 65.99822312476202
1542
+ - type: euclidean_precision
1543
+ value: 63.58522866226461
1544
+ - type: euclidean_recall
1545
+ value: 68.60158311345647
1546
+ - type: manhattan_accuracy
1547
+ value: 84.6754485307266
1548
+ - type: manhattan_ap
1549
+ value: 69.57324451019119
1550
+ - type: manhattan_f1
1551
+ value: 65.7235045917101
1552
+ - type: manhattan_precision
1553
+ value: 62.04311152764761
1554
+ - type: manhattan_recall
1555
+ value: 69.86807387862797
1556
+ - type: max_accuracy
1557
+ value: 84.6754485307266
1558
+ - type: max_ap
1559
+ value: 69.6007143804539
1560
+ - type: max_f1
1561
+ value: 65.99822312476202
1562
+ - task:
1563
+ type: PairClassification
1564
+ dataset:
1565
+ type: mteb/twitterurlcorpus-pairclassification
1566
+ name: MTEB TwitterURLCorpus
1567
+ config: default
1568
+ split: test
1569
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
1570
+ metrics:
1571
+ - type: cos_sim_accuracy
1572
+ value: 87.63922847052432
1573
+ - type: cos_sim_ap
1574
+ value: 83.48934190421085
1575
+ - type: cos_sim_f1
1576
+ value: 75.42265503384861
1577
+ - type: cos_sim_precision
1578
+ value: 71.17868124359413
1579
+ - type: cos_sim_recall
1580
+ value: 80.20480443486295
1581
+ - type: dot_accuracy
1582
+ value: 87.63922847052432
1583
+ - type: dot_ap
1584
+ value: 83.4893468701264
1585
+ - type: dot_f1
1586
+ value: 75.42265503384861
1587
+ - type: dot_precision
1588
+ value: 71.17868124359413
1589
+ - type: dot_recall
1590
+ value: 80.20480443486295
1591
+ - type: euclidean_accuracy
1592
+ value: 87.63922847052432
1593
+ - type: euclidean_ap
1594
+ value: 83.48934073168017
1595
+ - type: euclidean_f1
1596
+ value: 75.42265503384861
1597
+ - type: euclidean_precision
1598
+ value: 71.17868124359413
1599
+ - type: euclidean_recall
1600
+ value: 80.20480443486295
1601
+ - type: manhattan_accuracy
1602
+ value: 87.66251406838204
1603
+ - type: manhattan_ap
1604
+ value: 83.46319621504654
1605
+ - type: manhattan_f1
1606
+ value: 75.41883304448297
1607
+ - type: manhattan_precision
1608
+ value: 71.0089747076421
1609
+ - type: manhattan_recall
1610
+ value: 80.41268863566368
1611
+ - type: max_accuracy
1612
+ value: 87.66251406838204
1613
+ - type: max_ap
1614
+ value: 83.4893468701264
1615
+ - type: max_f1
1616
+ value: 75.42265503384861
1617
  ---
1618
+
1619
+
1620
+ # {MODEL_NAME}
1621
+
1622
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
1623
+
1624
+ <!--- Describe your model here -->
1625
+
1626
+ ## Usage (Sentence-Transformers)
1627
+
1628
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
1629
+
1630
+ ```
1631
+ pip install -U sentence-transformers
1632
+ ```
1633
+
1634
+ Then you can use the model like this:
1635
+
1636
+ ```python
1637
+ from sentence_transformers import SentenceTransformer
1638
+ sentences = ["This is an example sentence", "Each sentence is converted"]
1639
+
1640
+ model = SentenceTransformer('{MODEL_NAME}')
1641
+ embeddings = model.encode(sentences)
1642
+ print(embeddings)
1643
+ ```
1644
+
1645
+
1646
+
1647
+ ## Evaluation Results
1648
+
1649
+ <!--- Describe how your model was evaluated -->
1650
+
1651
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
1652
+
1653
+
1654
+ ## Training
1655
+ The model was trained with the parameters:
1656
+
1657
+ **DataLoader**:
1658
+
1659
+ `torch.utils.data.dataloader.DataLoader` of length 15607 with parameters:
1660
+ ```
1661
+ {'batch_size': 48, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
1662
+ ```
1663
+
1664
+ **Loss**:
1665
+
1666
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
1667
+ ```
1668
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
1669
+ ```
1670
+
1671
+ Parameters of the fit()-Method:
1672
+ ```
1673
+ {
1674
+ "epochs": 10,
1675
+ "evaluation_steps": 0,
1676
+ "evaluator": "NoneType",
1677
+ "max_grad_norm": 1,
1678
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
1679
+ "optimizer_params": {
1680
+ "lr": 2e-05
1681
+ },
1682
+ "scheduler": "WarmupLinear",
1683
+ "steps_per_epoch": null,
1684
+ "warmup_steps": 1000,
1685
+ "weight_decay": 0.01
1686
+ }
1687
+ ```
1688
+
1689
+
1690
+ ## Full Model Architecture
1691
+ ```
1692
+ SentenceTransformer(
1693
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
1694
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
1695
+ (2): Normalize()
1696
+ )
1697
+ ```
1698
+
1699
+ ## Citing & Authors
1700
+
1701
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v1/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.31.0.dev0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6366f25d0260bb5245a595cc2024443cdc6c140a09eb4a21ca2733dd61cd245
3
+ size 210837783
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "[UNK]"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "<s>",
5
+ "do_lower_case": true,
6
+ "eos_token": "</s>",
7
+ "mask_token": "<mask>",
8
+ "model_max_length": 512,
9
+ "pad_token": "<pad>",
10
+ "sep_token": "</s>",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "MPNetTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff