yangwang825
commited on
Upload model
Browse files- config.json +3 -2
- model.safetensors +3 -0
- modeling_whisper_spkreg.py +640 -0
config.json
CHANGED
@@ -4,11 +4,12 @@
|
|
4 |
"activation_function": "gelu",
|
5 |
"apply_spec_augment": false,
|
6 |
"architectures": [
|
7 |
-
"
|
8 |
],
|
9 |
"attention_dropout": 0.0,
|
10 |
"auto_map": {
|
11 |
-
"AutoConfig": "configuration_whisper_spkreg.WhisperSpkRegConfig"
|
|
|
12 |
},
|
13 |
"begin_suppress_tokens": [
|
14 |
220,
|
|
|
4 |
"activation_function": "gelu",
|
5 |
"apply_spec_augment": false,
|
6 |
"architectures": [
|
7 |
+
"WhisperSpkRegModel"
|
8 |
],
|
9 |
"attention_dropout": 0.0,
|
10 |
"auto_map": {
|
11 |
+
"AutoConfig": "configuration_whisper_spkreg.WhisperSpkRegConfig",
|
12 |
+
"AutoModel": "modeling_whisper_spkreg.WhisperSpkRegModel"
|
13 |
},
|
14 |
"begin_suppress_tokens": [
|
15 |
220,
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93063179f1bbb1d278906e4a0c4adb3615ffcbe872ae23166d0fd9b0611ea1df
|
3 |
+
size 290402464
|
modeling_whisper_spkreg.py
ADDED
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from typing import Union, Tuple, Optional
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
SequenceClassifierOutput,
|
14 |
+
Wav2Vec2BaseModelOutput,
|
15 |
+
Seq2SeqModelOutput,
|
16 |
+
BaseModelOutput
|
17 |
+
)
|
18 |
+
from transformers.cache_utils import (
|
19 |
+
Cache,
|
20 |
+
DynamicCache,
|
21 |
+
EncoderDecoderCache,
|
22 |
+
StaticCache
|
23 |
+
)
|
24 |
+
from transformers.models.whisper.modeling_whisper import (
|
25 |
+
WhisperEncoder,
|
26 |
+
WhisperEncoderLayer,
|
27 |
+
WhisperDecoderLayer,
|
28 |
+
WhisperDecoder,
|
29 |
+
_HIDDEN_STATES_START_POSITION
|
30 |
+
)
|
31 |
+
|
32 |
+
from .configuration_whisper_spkreg import WhisperSpkRegConfig
|
33 |
+
|
34 |
+
|
35 |
+
def sinusoids(length: int, channels: int, max_timescale: float = 10000) -> torch.Tensor:
|
36 |
+
"""Returns sinusoids for positional embedding"""
|
37 |
+
if channels % 2 != 0:
|
38 |
+
raise ValueError(
|
39 |
+
f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels."
|
40 |
+
)
|
41 |
+
log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1)
|
42 |
+
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
|
43 |
+
scaled_time = torch.arange(length).view(-1, 1) * inv_timescales.view(1, -1)
|
44 |
+
return torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1)
|
45 |
+
|
46 |
+
|
47 |
+
def _compute_mask_indices(
|
48 |
+
shape: Tuple[int, int],
|
49 |
+
mask_prob: float,
|
50 |
+
mask_length: int,
|
51 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
52 |
+
min_masks: int = 0,
|
53 |
+
) -> np.ndarray:
|
54 |
+
"""
|
55 |
+
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
|
56 |
+
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
|
57 |
+
CPU as part of the preprocessing during training.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
|
61 |
+
the first element is the batch size and the second element is the length of the axis to span.
|
62 |
+
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
|
63 |
+
independently generated mask spans of length `mask_length` is computed by
|
64 |
+
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
|
65 |
+
actual percentage will be smaller.
|
66 |
+
mask_length: size of the mask
|
67 |
+
min_masks: minimum number of masked spans
|
68 |
+
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
|
69 |
+
each batch dimension.
|
70 |
+
"""
|
71 |
+
batch_size, sequence_length = shape
|
72 |
+
|
73 |
+
if mask_length < 1:
|
74 |
+
raise ValueError("`mask_length` has to be bigger than 0.")
|
75 |
+
|
76 |
+
if mask_length > sequence_length:
|
77 |
+
raise ValueError(
|
78 |
+
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
|
79 |
+
f" and `sequence_length`: {sequence_length}`"
|
80 |
+
)
|
81 |
+
|
82 |
+
# epsilon is used for probabilistic rounding
|
83 |
+
epsilon = np.random.rand(1).item()
|
84 |
+
|
85 |
+
def compute_num_masked_span(input_length):
|
86 |
+
"""Given input length, compute how many spans should be masked"""
|
87 |
+
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
|
88 |
+
num_masked_span = max(num_masked_span, min_masks)
|
89 |
+
|
90 |
+
# make sure num masked span <= sequence_length
|
91 |
+
if num_masked_span * mask_length > sequence_length:
|
92 |
+
num_masked_span = sequence_length // mask_length
|
93 |
+
|
94 |
+
# make sure num_masked span is also <= input_length - (mask_length - 1)
|
95 |
+
if input_length - (mask_length - 1) < num_masked_span:
|
96 |
+
num_masked_span = max(input_length - (mask_length - 1), 0)
|
97 |
+
|
98 |
+
return num_masked_span
|
99 |
+
|
100 |
+
# compute number of masked spans in batch
|
101 |
+
input_lengths = (
|
102 |
+
attention_mask.sum(-1).detach().tolist()
|
103 |
+
if attention_mask is not None
|
104 |
+
else [sequence_length for _ in range(batch_size)]
|
105 |
+
)
|
106 |
+
|
107 |
+
# SpecAugment mask to fill
|
108 |
+
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
|
109 |
+
spec_aug_mask_idxs = []
|
110 |
+
|
111 |
+
max_num_masked_span = compute_num_masked_span(sequence_length)
|
112 |
+
|
113 |
+
if max_num_masked_span == 0:
|
114 |
+
return spec_aug_mask
|
115 |
+
|
116 |
+
for input_length in input_lengths:
|
117 |
+
# compute num of masked spans for this input
|
118 |
+
num_masked_span = compute_num_masked_span(input_length)
|
119 |
+
|
120 |
+
# get random indices to mask
|
121 |
+
spec_aug_mask_idx = np.random.choice(
|
122 |
+
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
|
123 |
+
)
|
124 |
+
|
125 |
+
# pick first sampled index that will serve as a dummy index to pad vector
|
126 |
+
# to ensure same dimension for all batches due to probabilistic rounding
|
127 |
+
# Picking first sample just pads those vectors twice.
|
128 |
+
if len(spec_aug_mask_idx) == 0:
|
129 |
+
# this case can only happen if `input_length` is strictly smaller then
|
130 |
+
# `sequence_length` in which case the last token has to be a padding
|
131 |
+
# token which we can use as a dummy mask id
|
132 |
+
dummy_mask_idx = sequence_length - 1
|
133 |
+
else:
|
134 |
+
dummy_mask_idx = spec_aug_mask_idx[0]
|
135 |
+
|
136 |
+
spec_aug_mask_idx = np.concatenate(
|
137 |
+
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
|
138 |
+
)
|
139 |
+
spec_aug_mask_idxs.append(spec_aug_mask_idx)
|
140 |
+
|
141 |
+
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
|
142 |
+
|
143 |
+
# expand masked indices to masked spans
|
144 |
+
spec_aug_mask_idxs = np.broadcast_to(
|
145 |
+
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
|
146 |
+
)
|
147 |
+
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
|
148 |
+
|
149 |
+
# add offset to the starting indexes so that indexes now create a span
|
150 |
+
offsets = np.arange(mask_length)[None, None, :]
|
151 |
+
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
|
152 |
+
batch_size, max_num_masked_span * mask_length
|
153 |
+
)
|
154 |
+
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
|
155 |
+
|
156 |
+
# ensure that we cannot have indices larger than sequence_length
|
157 |
+
if spec_aug_mask_idxs.max() > sequence_length - 1:
|
158 |
+
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
|
159 |
+
|
160 |
+
# scatter indices to mask
|
161 |
+
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
|
162 |
+
|
163 |
+
return spec_aug_mask
|
164 |
+
|
165 |
+
|
166 |
+
class WhisperSpkRegPreTrainedModel(PreTrainedModel):
|
167 |
+
|
168 |
+
config_class = WhisperSpkRegConfig
|
169 |
+
base_model_prefix = "model"
|
170 |
+
main_input_name = "input_features"
|
171 |
+
supports_gradient_checkpointing = True
|
172 |
+
_no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"]
|
173 |
+
_supports_flash_attn_2 = True
|
174 |
+
_supports_sdpa = True
|
175 |
+
_supports_cache_class = True
|
176 |
+
_supports_static_cache = True
|
177 |
+
|
178 |
+
def _init_weights(self, module):
|
179 |
+
std = self.config.init_std
|
180 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
181 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
182 |
+
if module.bias is not None:
|
183 |
+
module.bias.data.zero_()
|
184 |
+
elif isinstance(module, nn.Embedding):
|
185 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
186 |
+
if module.padding_idx is not None:
|
187 |
+
module.weight.data[module.padding_idx].zero_()
|
188 |
+
elif isinstance(module, WhisperEncoder):
|
189 |
+
with torch.no_grad():
|
190 |
+
embed_positions = module.embed_positions.weight
|
191 |
+
embed_positions.copy_(sinusoids(*embed_positions.shape))
|
192 |
+
|
193 |
+
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
194 |
+
"""
|
195 |
+
Computes the output length of the convolutional layers
|
196 |
+
"""
|
197 |
+
input_lengths = (input_lengths - 1) // 2 + 1
|
198 |
+
|
199 |
+
return input_lengths
|
200 |
+
|
201 |
+
|
202 |
+
class WhisperSpkRegModel(WhisperSpkRegPreTrainedModel):
|
203 |
+
|
204 |
+
def __init__(self, config: WhisperSpkRegConfig):
|
205 |
+
super().__init__(config)
|
206 |
+
|
207 |
+
self.encoder = WhisperEncoder(config)
|
208 |
+
self.decoder = WhisperDecoder(config)
|
209 |
+
# Initialize weights and apply final processing
|
210 |
+
self.post_init()
|
211 |
+
|
212 |
+
def get_input_embeddings(self):
|
213 |
+
return self.decoder.embed_tokens
|
214 |
+
|
215 |
+
def set_input_embeddings(self, value):
|
216 |
+
self.decoder.embed_tokens = value
|
217 |
+
|
218 |
+
def get_encoder(self):
|
219 |
+
return self.encoder
|
220 |
+
|
221 |
+
def get_decoder(self):
|
222 |
+
return self.decoder
|
223 |
+
|
224 |
+
def freeze_encoder(self):
|
225 |
+
"""
|
226 |
+
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
|
227 |
+
not be updated during training.
|
228 |
+
"""
|
229 |
+
self.encoder._freeze_parameters()
|
230 |
+
|
231 |
+
def _mask_input_features(
|
232 |
+
self,
|
233 |
+
input_features: torch.FloatTensor,
|
234 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
235 |
+
):
|
236 |
+
"""
|
237 |
+
Masks extracted features along time axis and/or along feature axis according to
|
238 |
+
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
239 |
+
"""
|
240 |
+
|
241 |
+
# `config.apply_spec_augment` can set masking to False
|
242 |
+
if not getattr(self.config, "apply_spec_augment", True):
|
243 |
+
return input_features
|
244 |
+
|
245 |
+
# generate indices & apply SpecAugment along time axis
|
246 |
+
batch_size, hidden_size, sequence_length = input_features.size()
|
247 |
+
|
248 |
+
if self.config.mask_time_prob > 0 and self.training:
|
249 |
+
# generate indices & apply SpecAugment along time axis
|
250 |
+
mask_time_indices = _compute_mask_indices(
|
251 |
+
(batch_size, sequence_length),
|
252 |
+
mask_prob=self.config.mask_time_prob,
|
253 |
+
mask_length=self.config.mask_time_length,
|
254 |
+
attention_mask=attention_mask,
|
255 |
+
min_masks=self.config.mask_time_min_masks,
|
256 |
+
)
|
257 |
+
mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool)
|
258 |
+
mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1)
|
259 |
+
input_features[mask_time_indices] = 0
|
260 |
+
|
261 |
+
if self.config.mask_feature_prob > 0 and self.training:
|
262 |
+
# generate indices & apply SpecAugment along feature axis
|
263 |
+
mask_feature_indices = _compute_mask_indices(
|
264 |
+
(batch_size, hidden_size),
|
265 |
+
mask_prob=self.config.mask_feature_prob,
|
266 |
+
mask_length=self.config.mask_feature_length,
|
267 |
+
min_masks=self.config.mask_feature_min_masks,
|
268 |
+
)
|
269 |
+
mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool)
|
270 |
+
input_features[mask_feature_indices] = 0
|
271 |
+
|
272 |
+
return input_features
|
273 |
+
|
274 |
+
def forward(
|
275 |
+
self,
|
276 |
+
input_features: Optional[torch.FloatTensor] = None,
|
277 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
278 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
279 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
280 |
+
head_mask: Optional[torch.Tensor] = None,
|
281 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
282 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
283 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
284 |
+
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
|
285 |
+
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
|
286 |
+
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
|
287 |
+
use_cache: Optional[bool] = None,
|
288 |
+
output_attentions: Optional[bool] = None,
|
289 |
+
output_hidden_states: Optional[bool] = None,
|
290 |
+
return_dict: Optional[bool] = None,
|
291 |
+
cache_position: Optional[torch.LongTensor] = None,
|
292 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
|
293 |
+
r"""
|
294 |
+
Returns:
|
295 |
+
|
296 |
+
Example:
|
297 |
+
```python
|
298 |
+
>>> import torch
|
299 |
+
>>> from transformers import AutoFeatureExtractor, WhisperModel
|
300 |
+
>>> from datasets import load_dataset
|
301 |
+
|
302 |
+
>>> model = WhisperModel.from_pretrained("openai/whisper-base")
|
303 |
+
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
|
304 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
305 |
+
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
|
306 |
+
>>> input_features = inputs.input_features
|
307 |
+
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
|
308 |
+
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
|
309 |
+
>>> list(last_hidden_state.shape)
|
310 |
+
[1, 2, 512]
|
311 |
+
```"""
|
312 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
313 |
+
output_hidden_states = (
|
314 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
315 |
+
)
|
316 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
317 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
318 |
+
|
319 |
+
if encoder_outputs is None:
|
320 |
+
input_features = self._mask_input_features(input_features, attention_mask=attention_mask)
|
321 |
+
|
322 |
+
encoder_outputs = self.encoder(
|
323 |
+
input_features,
|
324 |
+
head_mask=head_mask,
|
325 |
+
output_attentions=output_attentions,
|
326 |
+
output_hidden_states=output_hidden_states,
|
327 |
+
return_dict=return_dict,
|
328 |
+
)
|
329 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
330 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
331 |
+
encoder_outputs = BaseModelOutput(
|
332 |
+
last_hidden_state=encoder_outputs[0],
|
333 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
334 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
335 |
+
)
|
336 |
+
|
337 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
338 |
+
decoder_outputs = self.decoder(
|
339 |
+
input_ids=decoder_input_ids,
|
340 |
+
attention_mask=decoder_attention_mask,
|
341 |
+
encoder_hidden_states=encoder_outputs[0],
|
342 |
+
head_mask=decoder_head_mask,
|
343 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
344 |
+
past_key_values=past_key_values,
|
345 |
+
inputs_embeds=decoder_inputs_embeds,
|
346 |
+
position_ids=decoder_position_ids,
|
347 |
+
use_cache=use_cache,
|
348 |
+
output_attentions=output_attentions,
|
349 |
+
output_hidden_states=output_hidden_states,
|
350 |
+
return_dict=return_dict,
|
351 |
+
cache_position=cache_position,
|
352 |
+
)
|
353 |
+
|
354 |
+
if not return_dict:
|
355 |
+
return decoder_outputs + encoder_outputs
|
356 |
+
|
357 |
+
return Seq2SeqModelOutput(
|
358 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
359 |
+
past_key_values=decoder_outputs.past_key_values,
|
360 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
361 |
+
decoder_attentions=decoder_outputs.attentions,
|
362 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
363 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
364 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
365 |
+
encoder_attentions=encoder_outputs.attentions,
|
366 |
+
)
|
367 |
+
|
368 |
+
|
369 |
+
class AngularLinear(nn.Module):
|
370 |
+
|
371 |
+
def __init__(self, in_features: int, out_features: int):
|
372 |
+
super(AngularLinear, self).__init__()
|
373 |
+
self.in_features = in_features
|
374 |
+
self.out_features = out_features
|
375 |
+
self.weight = torch.nn.Parameter(
|
376 |
+
torch.FloatTensor(out_features, in_features), requires_grad=True
|
377 |
+
)
|
378 |
+
nn.init.xavier_normal_(self.weight, gain=1)
|
379 |
+
|
380 |
+
def forward(
|
381 |
+
self,
|
382 |
+
inputs: torch.Tensor,
|
383 |
+
):
|
384 |
+
# Calculation of cos(theta)
|
385 |
+
cosine = F.linear(F.normalize(inputs), F.normalize(self.weight))
|
386 |
+
return cosine
|
387 |
+
|
388 |
+
def extra_repr(self) -> str:
|
389 |
+
return 'in_features={}, out_features={}'.format(
|
390 |
+
self.in_features, self.out_features
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
class AMSoftmaxLoss(nn.Module):
|
395 |
+
"""Additive Margin Softmax (CosFace).
|
396 |
+
|
397 |
+
Paper: Wang, Feng, et al. "Additive margin softmax for face verification."
|
398 |
+
IEEE Signal Processing Letters 25.7 (2018): 926-930.
|
399 |
+
"""
|
400 |
+
def __init__(
|
401 |
+
self,
|
402 |
+
scale: float = 30.0,
|
403 |
+
margin: float = 0.35,
|
404 |
+
label_smoothing: float = 0.0,
|
405 |
+
reduction: str = "mean"
|
406 |
+
):
|
407 |
+
"""
|
408 |
+
Args:
|
409 |
+
num_classes: Number of classes (output dimension)
|
410 |
+
scale: Scaling factor for logits (default: 30.0)
|
411 |
+
margin: Angular margin (default: 0.35)
|
412 |
+
"""
|
413 |
+
super(AMSoftmaxLoss, self).__init__()
|
414 |
+
self.scale = scale
|
415 |
+
self.margin = margin
|
416 |
+
self.label_smoothing = label_smoothing
|
417 |
+
self.reduction = reduction
|
418 |
+
|
419 |
+
def forward(
|
420 |
+
self,
|
421 |
+
inputs: torch.Tensor,
|
422 |
+
targets: torch.Tensor,
|
423 |
+
):
|
424 |
+
"""
|
425 |
+
Args:
|
426 |
+
inputs: Input features of shape (batch_size, num_labels)
|
427 |
+
targets: Ground truth labels of shape (batch_size)
|
428 |
+
label_smoothing: Label smoothing factor (default: 0.0)
|
429 |
+
reduction: Reduction method (default: "mean")
|
430 |
+
Returns:
|
431 |
+
Loss value
|
432 |
+
"""
|
433 |
+
_, num_labels = inputs.shape
|
434 |
+
# `inputs` are the outputs from AngularLinear()
|
435 |
+
cos_theta = torch.clamp(inputs, -1.0 + 1e-7, 1.0 - 1e-7)
|
436 |
+
psi = cos_theta - self.margin
|
437 |
+
one_hot = nn.functional.one_hot(targets, num_labels)
|
438 |
+
outputs = self.scale * torch.where(one_hot.bool(), psi, cos_theta)
|
439 |
+
loss = F.cross_entropy(
|
440 |
+
outputs, targets, label_smoothing=self.label_smoothing, reduction=self.reduction
|
441 |
+
)
|
442 |
+
return loss
|
443 |
+
|
444 |
+
|
445 |
+
class AAMSoftmaxLoss(nn.Module):
|
446 |
+
"""Additive Angular Margin Softmax (ArcFace).
|
447 |
+
|
448 |
+
Paper: Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition."
|
449 |
+
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
|
450 |
+
"""
|
451 |
+
def __init__(
|
452 |
+
self,
|
453 |
+
scale: float = 30.0,
|
454 |
+
margin: float = 0.35,
|
455 |
+
easy_margin: bool = False,
|
456 |
+
label_smoothing: float = 0.0,
|
457 |
+
reduction: str = "mean"
|
458 |
+
):
|
459 |
+
"""
|
460 |
+
Args:
|
461 |
+
num_classes: Number of classes (output dimension)
|
462 |
+
scale: Scaling factor for logits (default: 30.0)
|
463 |
+
margin: Angular margin (default: 0.35)
|
464 |
+
easy_margin: Use the easy margin loss (default: False)
|
465 |
+
"""
|
466 |
+
super(AAMSoftmaxLoss, self).__init__()
|
467 |
+
self.scale = scale
|
468 |
+
self.margin = margin
|
469 |
+
self.easy_margin = easy_margin
|
470 |
+
self.label_smoothing = label_smoothing
|
471 |
+
self.reduction = reduction
|
472 |
+
|
473 |
+
def forward(
|
474 |
+
self,
|
475 |
+
inputs: torch.Tensor,
|
476 |
+
targets: torch.Tensor,
|
477 |
+
):
|
478 |
+
"""
|
479 |
+
Args:
|
480 |
+
inputs: Input features of shape (batch_size, num_labels)
|
481 |
+
targets: Ground truth labels of shape (batch_size)
|
482 |
+
Returns:
|
483 |
+
Loss value
|
484 |
+
"""
|
485 |
+
_, num_labels = inputs.shape
|
486 |
+
# `inputs` are the outputs from AngularLinear()
|
487 |
+
cos_theta = torch.clamp(inputs, -1.0 + 1e-7, 1.0 - 1e-7)
|
488 |
+
theta = torch.acos(cos_theta)
|
489 |
+
psi = torch.cos(theta + self.margin)
|
490 |
+
one_hot = nn.functional.one_hot(targets, num_labels)
|
491 |
+
outputs = self.scale * torch.where(one_hot.bool(), psi, cos_theta)
|
492 |
+
loss = F.cross_entropy(
|
493 |
+
outputs, targets, label_smoothing=self.label_smoothing, reduction=self.reduction
|
494 |
+
)
|
495 |
+
return loss
|
496 |
+
|
497 |
+
|
498 |
+
class WhisperSpkRegForSequenceClassification(WhisperSpkRegPreTrainedModel):
|
499 |
+
|
500 |
+
def __init__(self, config):
|
501 |
+
super().__init__(config)
|
502 |
+
|
503 |
+
self.encoder = WhisperEncoder(config)
|
504 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
505 |
+
if config.use_weighted_layer_sum:
|
506 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
507 |
+
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
508 |
+
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
509 |
+
|
510 |
+
# Initialize weights and apply final processing
|
511 |
+
self.post_init()
|
512 |
+
|
513 |
+
def freeze_encoder(self):
|
514 |
+
"""
|
515 |
+
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
|
516 |
+
not be updated during training. Only the projection layers and classification head will be updated.
|
517 |
+
"""
|
518 |
+
self.encoder._freeze_parameters()
|
519 |
+
|
520 |
+
def get_input_embeddings(self) -> nn.Module:
|
521 |
+
return self.encoder.get_input_embeddings()
|
522 |
+
|
523 |
+
def set_input_embeddings(self, value: nn.Module):
|
524 |
+
self.encoder.set_input_embeddings(value)
|
525 |
+
|
526 |
+
def forward(
|
527 |
+
self,
|
528 |
+
input_features: Optional[torch.LongTensor] = None,
|
529 |
+
head_mask: Optional[torch.Tensor] = None,
|
530 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
531 |
+
labels: Optional[torch.LongTensor] = None,
|
532 |
+
output_attentions: Optional[bool] = None,
|
533 |
+
output_hidden_states: Optional[bool] = None,
|
534 |
+
return_dict: Optional[bool] = None,
|
535 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
536 |
+
r"""
|
537 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
538 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
539 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
540 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
541 |
+
|
542 |
+
Returns:
|
543 |
+
|
544 |
+
Example:
|
545 |
+
|
546 |
+
```python
|
547 |
+
>>> import torch
|
548 |
+
>>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification
|
549 |
+
>>> from datasets import load_dataset
|
550 |
+
|
551 |
+
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")
|
552 |
+
>>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")
|
553 |
+
|
554 |
+
>>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True)
|
555 |
+
>>> sample = next(iter(ds))
|
556 |
+
|
557 |
+
>>> inputs = feature_extractor(
|
558 |
+
... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt"
|
559 |
+
... )
|
560 |
+
>>> input_features = inputs.input_features
|
561 |
+
|
562 |
+
>>> with torch.no_grad():
|
563 |
+
... logits = model(input_features).logits
|
564 |
+
|
565 |
+
>>> predicted_class_ids = torch.argmax(logits).item()
|
566 |
+
>>> predicted_label = model.config.id2label[predicted_class_ids]
|
567 |
+
>>> predicted_label
|
568 |
+
'Afrikaans'
|
569 |
+
```"""
|
570 |
+
|
571 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
572 |
+
output_hidden_states = (
|
573 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
574 |
+
)
|
575 |
+
if self.config.use_weighted_layer_sum:
|
576 |
+
output_hidden_states = True
|
577 |
+
elif output_hidden_states is None:
|
578 |
+
output_hidden_states = self.config.output_hidden_states
|
579 |
+
|
580 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
581 |
+
|
582 |
+
if encoder_outputs is None:
|
583 |
+
encoder_outputs = self.encoder(
|
584 |
+
input_features,
|
585 |
+
head_mask=head_mask,
|
586 |
+
output_attentions=output_attentions,
|
587 |
+
output_hidden_states=output_hidden_states,
|
588 |
+
return_dict=return_dict,
|
589 |
+
)
|
590 |
+
|
591 |
+
if self.config.use_weighted_layer_sum:
|
592 |
+
hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION]
|
593 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
594 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
595 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
596 |
+
else:
|
597 |
+
hidden_states = encoder_outputs[0]
|
598 |
+
|
599 |
+
hidden_states = self.projector(hidden_states)
|
600 |
+
pooled_output = hidden_states.mean(dim=1)
|
601 |
+
|
602 |
+
logits = self.classifier(pooled_output)
|
603 |
+
|
604 |
+
loss = None
|
605 |
+
if labels is not None:
|
606 |
+
if self.config.loss_fct == 'cross_entropy':
|
607 |
+
loss_fct = nn.CrossEntropyLoss(
|
608 |
+
label_smoothing=self.config.label_smoothing,
|
609 |
+
reduction=self.config.reduction
|
610 |
+
)
|
611 |
+
elif self.config.loss_fct == 'additive_margin':
|
612 |
+
loss_fct = AMSoftmaxLoss(
|
613 |
+
scale=self.config.scale,
|
614 |
+
margin=self.config.margin,
|
615 |
+
label_smoothing=self.config.label_smoothing,
|
616 |
+
reduction=self.config.reduction
|
617 |
+
)
|
618 |
+
elif self.config.loss_fct == 'additive_angular_margin':
|
619 |
+
loss_fct = AAMSoftmaxLoss(
|
620 |
+
scale=self.config.scale,
|
621 |
+
margin=self.config.margin,
|
622 |
+
easy_margin=self.config.easy_margin,
|
623 |
+
label_smoothing=self.config.label_smoothing,
|
624 |
+
reduction=self.config.reduction
|
625 |
+
)
|
626 |
+
loss = loss_fct(
|
627 |
+
logits.view(-1, self.config.num_labels),
|
628 |
+
labels.view(-1).to(logits.device),
|
629 |
+
)
|
630 |
+
|
631 |
+
if not return_dict:
|
632 |
+
output = (logits,) + encoder_outputs[1:]
|
633 |
+
return ((loss,) + output) if loss is not None else output
|
634 |
+
|
635 |
+
return SequenceClassifierOutput(
|
636 |
+
loss=loss,
|
637 |
+
logits=logits,
|
638 |
+
hidden_states=encoder_outputs.hidden_states,
|
639 |
+
attentions=encoder_outputs.attentions,
|
640 |
+
)
|