yangwang825
commited on
Upload config
Browse files- README.md +199 -0
- config.json +126 -0
- configuration_wav2vec2_spkreg.py +344 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.0,
|
3 |
+
"adapter_attn_dim": null,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForPreTraining"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.1,
|
12 |
+
"auto_map": {
|
13 |
+
"AutoConfig": "configuration_wav2vec2_spkreg.Wav2Vec2SpkRegConfig"
|
14 |
+
},
|
15 |
+
"bos_token_id": 1,
|
16 |
+
"classifier_proj_size": 256,
|
17 |
+
"codevector_dim": 256,
|
18 |
+
"contrastive_logits_temperature": 0.1,
|
19 |
+
"conv_bias": false,
|
20 |
+
"conv_dim": [
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512,
|
25 |
+
512,
|
26 |
+
512,
|
27 |
+
512
|
28 |
+
],
|
29 |
+
"conv_kernel": [
|
30 |
+
10,
|
31 |
+
3,
|
32 |
+
3,
|
33 |
+
3,
|
34 |
+
3,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"conv_stride": [
|
39 |
+
5,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2,
|
43 |
+
2,
|
44 |
+
2,
|
45 |
+
2
|
46 |
+
],
|
47 |
+
"ctc_loss_reduction": "sum",
|
48 |
+
"ctc_zero_infinity": false,
|
49 |
+
"diversity_loss_weight": 0.1,
|
50 |
+
"do_stable_layer_norm": false,
|
51 |
+
"easy_margin": false,
|
52 |
+
"eos_token_id": 2,
|
53 |
+
"feat_extract_activation": "gelu",
|
54 |
+
"feat_extract_norm": "group",
|
55 |
+
"feat_proj_dropout": 0.1,
|
56 |
+
"feat_quantizer_dropout": 0.0,
|
57 |
+
"final_dropout": 0.0,
|
58 |
+
"freeze_feat_extract_train": true,
|
59 |
+
"gradient_checkpointing": true,
|
60 |
+
"hidden_act": "gelu",
|
61 |
+
"hidden_dropout": 0.1,
|
62 |
+
"hidden_size": 768,
|
63 |
+
"initializer_range": 0.02,
|
64 |
+
"intermediate_size": 3072,
|
65 |
+
"label_smoothing": 0.0,
|
66 |
+
"layer_norm_eps": 1e-05,
|
67 |
+
"layerdrop": 0.0,
|
68 |
+
"loss_fct": "cross_entropy",
|
69 |
+
"margin": 0.35,
|
70 |
+
"mask_channel_length": 10,
|
71 |
+
"mask_channel_min_space": 1,
|
72 |
+
"mask_channel_other": 0.0,
|
73 |
+
"mask_channel_prob": 0.0,
|
74 |
+
"mask_channel_selection": "static",
|
75 |
+
"mask_feature_length": 10,
|
76 |
+
"mask_feature_min_masks": 0,
|
77 |
+
"mask_feature_prob": 0.0,
|
78 |
+
"mask_time_length": 10,
|
79 |
+
"mask_time_min_masks": 2,
|
80 |
+
"mask_time_min_space": 1,
|
81 |
+
"mask_time_other": 0.0,
|
82 |
+
"mask_time_prob": 0.05,
|
83 |
+
"mask_time_selection": "static",
|
84 |
+
"model_type": "wav2vec2_spkreg",
|
85 |
+
"no_mask_channel_overlap": false,
|
86 |
+
"no_mask_time_overlap": false,
|
87 |
+
"num_adapter_layers": 3,
|
88 |
+
"num_attention_heads": 12,
|
89 |
+
"num_codevector_groups": 2,
|
90 |
+
"num_codevectors_per_group": 320,
|
91 |
+
"num_conv_pos_embedding_groups": 16,
|
92 |
+
"num_conv_pos_embeddings": 128,
|
93 |
+
"num_feat_extract_layers": 7,
|
94 |
+
"num_hidden_layers": 12,
|
95 |
+
"num_negatives": 100,
|
96 |
+
"output_hidden_size": 768,
|
97 |
+
"pad_token_id": 0,
|
98 |
+
"proj_codevector_dim": 256,
|
99 |
+
"reduction": "mean",
|
100 |
+
"scale": 30.0,
|
101 |
+
"tdnn_dilation": [
|
102 |
+
1,
|
103 |
+
2,
|
104 |
+
3,
|
105 |
+
1,
|
106 |
+
1
|
107 |
+
],
|
108 |
+
"tdnn_dim": [
|
109 |
+
512,
|
110 |
+
512,
|
111 |
+
512,
|
112 |
+
512,
|
113 |
+
1500
|
114 |
+
],
|
115 |
+
"tdnn_kernel": [
|
116 |
+
5,
|
117 |
+
3,
|
118 |
+
3,
|
119 |
+
1,
|
120 |
+
1
|
121 |
+
],
|
122 |
+
"transformers_version": "4.46.2",
|
123 |
+
"use_weighted_layer_sum": false,
|
124 |
+
"vocab_size": 32,
|
125 |
+
"xvector_output_dim": 512
|
126 |
+
}
|
configuration_wav2vec2_spkreg.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Wav2Vec2 model configuration"""
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import operator
|
5 |
+
|
6 |
+
from transformers.configuration_utils import PretrainedConfig
|
7 |
+
from transformers.utils import logging
|
8 |
+
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
class Wav2Vec2SpkRegConfig(PretrainedConfig):
|
14 |
+
r"""
|
15 |
+
This is the configuration class to store the configuration of a [`Wav2Vec2Model`]. It is used to instantiate an
|
16 |
+
Wav2Vec2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
17 |
+
with the defaults will yield a similar configuration to that of the Wav2Vec2
|
18 |
+
[facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) architecture.
|
19 |
+
|
20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
21 |
+
documentation from [`PretrainedConfig`] for more information.
|
22 |
+
|
23 |
+
|
24 |
+
Args:
|
25 |
+
vocab_size (`int`, *optional*, defaults to 32):
|
26 |
+
Vocabulary size of the Wav2Vec2 model. Defines the number of different tokens that can be represented by
|
27 |
+
the `inputs_ids` passed when calling [`Wav2Vec2Model`] or [`TFWav2Vec2Model`]. Vocabulary size of the
|
28 |
+
model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
|
29 |
+
method of [`Wav2Vec2Model`].
|
30 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
31 |
+
Dimensionality of the encoder layers and the pooler layer.
|
32 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
33 |
+
Number of hidden layers in the Transformer encoder.
|
34 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
35 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
36 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
37 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
38 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
39 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
40 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
41 |
+
hidden_dropout (`float`, *optional*, defaults to 0.1):
|
42 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
43 |
+
activation_dropout (`float`, *optional*, defaults to 0.1):
|
44 |
+
The dropout ratio for activations inside the fully connected layer.
|
45 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
46 |
+
The dropout ratio for the attention probabilities.
|
47 |
+
final_dropout (`float`, *optional*, defaults to 0.1):
|
48 |
+
The dropout probability for the final projection layer of [`Wav2Vec2ForCTC`].
|
49 |
+
layerdrop (`float`, *optional*, defaults to 0.1):
|
50 |
+
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
|
51 |
+
details.
|
52 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
53 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
54 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
55 |
+
The epsilon used by the layer normalization layers.
|
56 |
+
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
|
57 |
+
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
|
58 |
+
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
|
59 |
+
convolutional layers.
|
60 |
+
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
|
61 |
+
The dropout probability for output of the feature encoder.
|
62 |
+
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
|
63 |
+
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
|
64 |
+
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
|
65 |
+
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout probability for quantized feature encoder states.
|
67 |
+
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
|
68 |
+
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
|
69 |
+
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
|
70 |
+
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
|
71 |
+
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
|
72 |
+
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
|
73 |
+
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
|
74 |
+
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
|
75 |
+
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
|
76 |
+
*conv_dim*.
|
77 |
+
conv_bias (`bool`, *optional*, defaults to `False`):
|
78 |
+
Whether the 1D convolutional layers have a bias.
|
79 |
+
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
|
80 |
+
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
|
81 |
+
embeddings layer.
|
82 |
+
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
|
83 |
+
Number of groups of 1D convolutional positional embeddings layer.
|
84 |
+
do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
|
85 |
+
Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
|
86 |
+
True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
|
87 |
+
False` corresponds to applying layer norm after the attention layer.
|
88 |
+
apply_spec_augment (`bool`, *optional*, defaults to `True`):
|
89 |
+
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
|
90 |
+
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
|
91 |
+
Recognition](https://arxiv.org/abs/1904.08779).
|
92 |
+
mask_time_prob (`float`, *optional*, defaults to 0.05):
|
93 |
+
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
|
94 |
+
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
|
95 |
+
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
|
96 |
+
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
|
97 |
+
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
|
98 |
+
mask_time_length (`int`, *optional*, defaults to 10):
|
99 |
+
Length of vector span along the time axis.
|
100 |
+
mask_time_min_masks (`int`, *optional*, defaults to 2),:
|
101 |
+
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
|
102 |
+
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
|
103 |
+
mask_time_min_masks''
|
104 |
+
mask_feature_prob (`float`, *optional*, defaults to 0.0):
|
105 |
+
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
|
106 |
+
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
|
107 |
+
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
|
108 |
+
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
|
109 |
+
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
|
110 |
+
True`.
|
111 |
+
mask_feature_length (`int`, *optional*, defaults to 10):
|
112 |
+
Length of vector span along the feature axis.
|
113 |
+
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
|
114 |
+
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
|
115 |
+
step, irrespectively of `mask_feature_prob`. Only relevant if
|
116 |
+
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
|
117 |
+
num_codevectors_per_group (`int`, *optional*, defaults to 320):
|
118 |
+
Number of entries in each quantization codebook (group).
|
119 |
+
num_codevector_groups (`int`, *optional*, defaults to 2):
|
120 |
+
Number of codevector groups for product codevector quantization.
|
121 |
+
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
|
122 |
+
The temperature *kappa* in the contrastive loss.
|
123 |
+
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
|
124 |
+
The dropout probability for the output of the feature encoder that's used by the quantizer.
|
125 |
+
num_negatives (`int`, *optional*, defaults to 100):
|
126 |
+
Number of negative samples for the contrastive loss.
|
127 |
+
codevector_dim (`int`, *optional*, defaults to 256):
|
128 |
+
Dimensionality of the quantized feature vectors.
|
129 |
+
proj_codevector_dim (`int`, *optional*, defaults to 256):
|
130 |
+
Dimensionality of the final projection of both the quantized and the transformer features.
|
131 |
+
diversity_loss_weight (`int`, *optional*, defaults to 0.1):
|
132 |
+
The weight of the codebook diversity loss component.
|
133 |
+
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
|
134 |
+
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
|
135 |
+
instance of [`Wav2Vec2ForCTC`].
|
136 |
+
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
|
137 |
+
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
|
138 |
+
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
|
139 |
+
of [`Wav2Vec2ForCTC`].
|
140 |
+
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
|
141 |
+
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
|
142 |
+
instance of [`Wav2Vec2ForSequenceClassification`].
|
143 |
+
classifier_proj_size (`int`, *optional*, defaults to 256):
|
144 |
+
Dimensionality of the projection before token mean-pooling for classification.
|
145 |
+
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
|
146 |
+
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
|
147 |
+
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
|
148 |
+
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
|
149 |
+
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
|
150 |
+
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
|
151 |
+
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
|
152 |
+
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
|
153 |
+
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
|
154 |
+
xvector_output_dim (`int`, *optional*, defaults to 512):
|
155 |
+
Dimensionality of the *XVector* embedding vectors.
|
156 |
+
add_adapter (`bool`, *optional*, defaults to `False`):
|
157 |
+
Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for
|
158 |
+
warm-starting Wav2Vec2 for SpeechEncoderDecoder models.
|
159 |
+
adapter_kernel_size (`int`, *optional*, defaults to 3):
|
160 |
+
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
|
161 |
+
adapter_stride (`int`, *optional*, defaults to 2):
|
162 |
+
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
|
163 |
+
num_adapter_layers (`int`, *optional*, defaults to 3):
|
164 |
+
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
|
165 |
+
True`.
|
166 |
+
adapter_attn_dim (`int`, *optional*):
|
167 |
+
Dimension of the attention adapter weights to be used in each attention block. An example of a model using
|
168 |
+
attention adapters is [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all).
|
169 |
+
output_hidden_size (`int`, *optional*):
|
170 |
+
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
|
171 |
+
if `add_adapter is True`.
|
172 |
+
|
173 |
+
Example:
|
174 |
+
|
175 |
+
```python
|
176 |
+
>>> from transformers import Wav2Vec2Config, Wav2Vec2Model
|
177 |
+
|
178 |
+
>>> # Initializing a Wav2Vec2 facebook/wav2vec2-base-960h style configuration
|
179 |
+
>>> configuration = Wav2Vec2Config()
|
180 |
+
|
181 |
+
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-base-960h style configuration
|
182 |
+
>>> model = Wav2Vec2Model(configuration)
|
183 |
+
|
184 |
+
>>> # Accessing the model configuration
|
185 |
+
>>> configuration = model.config
|
186 |
+
```"""
|
187 |
+
|
188 |
+
model_type = "wav2vec2_spkreg"
|
189 |
+
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
vocab_size=32,
|
193 |
+
hidden_size=768,
|
194 |
+
num_hidden_layers=12,
|
195 |
+
num_attention_heads=12,
|
196 |
+
intermediate_size=3072,
|
197 |
+
hidden_act="gelu",
|
198 |
+
hidden_dropout=0.1,
|
199 |
+
activation_dropout=0.1,
|
200 |
+
attention_dropout=0.1,
|
201 |
+
feat_proj_dropout=0.0,
|
202 |
+
feat_quantizer_dropout=0.0,
|
203 |
+
final_dropout=0.1,
|
204 |
+
layerdrop=0.1,
|
205 |
+
initializer_range=0.02,
|
206 |
+
layer_norm_eps=1e-5,
|
207 |
+
feat_extract_norm="group",
|
208 |
+
feat_extract_activation="gelu",
|
209 |
+
conv_dim=(512, 512, 512, 512, 512, 512, 512),
|
210 |
+
conv_stride=(5, 2, 2, 2, 2, 2, 2),
|
211 |
+
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
|
212 |
+
conv_bias=False,
|
213 |
+
num_conv_pos_embeddings=128,
|
214 |
+
num_conv_pos_embedding_groups=16,
|
215 |
+
do_stable_layer_norm=False,
|
216 |
+
apply_spec_augment=True,
|
217 |
+
mask_time_prob=0.05,
|
218 |
+
mask_time_length=10,
|
219 |
+
mask_time_min_masks=2,
|
220 |
+
mask_feature_prob=0.0,
|
221 |
+
mask_feature_length=10,
|
222 |
+
mask_feature_min_masks=0,
|
223 |
+
num_codevectors_per_group=320,
|
224 |
+
num_codevector_groups=2,
|
225 |
+
contrastive_logits_temperature=0.1,
|
226 |
+
num_negatives=100,
|
227 |
+
codevector_dim=256,
|
228 |
+
proj_codevector_dim=256,
|
229 |
+
diversity_loss_weight=0.1,
|
230 |
+
ctc_loss_reduction="sum",
|
231 |
+
ctc_zero_infinity=False,
|
232 |
+
use_weighted_layer_sum=False,
|
233 |
+
classifier_proj_size=256,
|
234 |
+
tdnn_dim=(512, 512, 512, 512, 1500),
|
235 |
+
tdnn_kernel=(5, 3, 3, 1, 1),
|
236 |
+
tdnn_dilation=(1, 2, 3, 1, 1),
|
237 |
+
xvector_output_dim=512,
|
238 |
+
pad_token_id=0,
|
239 |
+
bos_token_id=1,
|
240 |
+
eos_token_id=2,
|
241 |
+
add_adapter=False,
|
242 |
+
adapter_kernel_size=3,
|
243 |
+
adapter_stride=2,
|
244 |
+
num_adapter_layers=3,
|
245 |
+
output_hidden_size=None,
|
246 |
+
adapter_attn_dim=None,
|
247 |
+
loss_fct: str = 'cross_entropy', # cross_entropy, additive_margin, additive_angular_margin
|
248 |
+
label_smoothing: float = 0.0,
|
249 |
+
scale: float = 30.0,
|
250 |
+
margin: float = 0.35,
|
251 |
+
easy_margin: bool = False,
|
252 |
+
reduction: str = "mean",
|
253 |
+
**kwargs,
|
254 |
+
):
|
255 |
+
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
|
256 |
+
self.hidden_size = hidden_size
|
257 |
+
self.feat_extract_norm = feat_extract_norm
|
258 |
+
self.feat_extract_activation = feat_extract_activation
|
259 |
+
self.conv_dim = list(conv_dim)
|
260 |
+
self.conv_stride = list(conv_stride)
|
261 |
+
self.conv_kernel = list(conv_kernel)
|
262 |
+
self.conv_bias = conv_bias
|
263 |
+
self.num_conv_pos_embeddings = num_conv_pos_embeddings
|
264 |
+
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
|
265 |
+
self.num_feat_extract_layers = len(self.conv_dim)
|
266 |
+
self.num_hidden_layers = num_hidden_layers
|
267 |
+
self.intermediate_size = intermediate_size
|
268 |
+
self.hidden_act = hidden_act
|
269 |
+
self.num_attention_heads = num_attention_heads
|
270 |
+
self.hidden_dropout = hidden_dropout
|
271 |
+
self.attention_dropout = attention_dropout
|
272 |
+
self.activation_dropout = activation_dropout
|
273 |
+
self.feat_proj_dropout = feat_proj_dropout
|
274 |
+
self.final_dropout = final_dropout
|
275 |
+
self.layerdrop = layerdrop
|
276 |
+
self.layer_norm_eps = layer_norm_eps
|
277 |
+
self.initializer_range = initializer_range
|
278 |
+
self.vocab_size = vocab_size
|
279 |
+
self.do_stable_layer_norm = do_stable_layer_norm
|
280 |
+
self.use_weighted_layer_sum = use_weighted_layer_sum
|
281 |
+
|
282 |
+
if (
|
283 |
+
(len(self.conv_stride) != self.num_feat_extract_layers)
|
284 |
+
or (len(self.conv_kernel) != self.num_feat_extract_layers)
|
285 |
+
or (len(self.conv_dim) != self.num_feat_extract_layers)
|
286 |
+
):
|
287 |
+
raise ValueError(
|
288 |
+
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
|
289 |
+
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
|
290 |
+
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
|
291 |
+
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
|
292 |
+
)
|
293 |
+
|
294 |
+
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
|
295 |
+
self.apply_spec_augment = apply_spec_augment
|
296 |
+
self.mask_time_prob = mask_time_prob
|
297 |
+
self.mask_time_length = mask_time_length
|
298 |
+
self.mask_time_min_masks = mask_time_min_masks
|
299 |
+
self.mask_feature_prob = mask_feature_prob
|
300 |
+
self.mask_feature_length = mask_feature_length
|
301 |
+
self.mask_feature_min_masks = mask_feature_min_masks
|
302 |
+
|
303 |
+
# parameters for pretraining with codevector quantized representations
|
304 |
+
self.num_codevectors_per_group = num_codevectors_per_group
|
305 |
+
self.num_codevector_groups = num_codevector_groups
|
306 |
+
self.contrastive_logits_temperature = contrastive_logits_temperature
|
307 |
+
self.feat_quantizer_dropout = feat_quantizer_dropout
|
308 |
+
self.num_negatives = num_negatives
|
309 |
+
self.codevector_dim = codevector_dim
|
310 |
+
self.proj_codevector_dim = proj_codevector_dim
|
311 |
+
self.diversity_loss_weight = diversity_loss_weight
|
312 |
+
|
313 |
+
# ctc loss
|
314 |
+
self.ctc_loss_reduction = ctc_loss_reduction
|
315 |
+
self.ctc_zero_infinity = ctc_zero_infinity
|
316 |
+
|
317 |
+
# adapter
|
318 |
+
self.add_adapter = add_adapter
|
319 |
+
self.adapter_kernel_size = adapter_kernel_size
|
320 |
+
self.adapter_stride = adapter_stride
|
321 |
+
self.num_adapter_layers = num_adapter_layers
|
322 |
+
self.output_hidden_size = output_hidden_size or hidden_size
|
323 |
+
self.adapter_attn_dim = adapter_attn_dim
|
324 |
+
|
325 |
+
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
|
326 |
+
self.classifier_proj_size = classifier_proj_size
|
327 |
+
|
328 |
+
# XVector-specific parameters. Feel free to ignore for other classes.
|
329 |
+
self.tdnn_dim = list(tdnn_dim)
|
330 |
+
self.tdnn_kernel = list(tdnn_kernel)
|
331 |
+
self.tdnn_dilation = list(tdnn_dilation)
|
332 |
+
self.xvector_output_dim = xvector_output_dim
|
333 |
+
|
334 |
+
# Loss function parameters. Feel free to ignore for other classes.
|
335 |
+
self.loss_fct = loss_fct
|
336 |
+
self.label_smoothing = label_smoothing
|
337 |
+
self.scale = scale
|
338 |
+
self.margin = margin
|
339 |
+
self.easy_margin = easy_margin
|
340 |
+
self.reduction = reduction
|
341 |
+
|
342 |
+
@property
|
343 |
+
def inputs_to_logits_ratio(self):
|
344 |
+
return functools.reduce(operator.mul, self.conv_stride, 1)
|