yangwang825
commited on
Commit
•
9f52360
1
Parent(s):
17feb1f
Create modeling_audio_spectrogram_transformer.py
Browse files
modeling_audio_spectrogram_transformer.py
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 MIT and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Audio Spectrogram Transformer (AST) model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, SequenceClassifierOutput
|
27 |
+
from transformers.modeling_utils import PreTrainedModel
|
28 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
29 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
30 |
+
from .configuration_audio_spectrogram_transformer import ASTConfig
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
# General docstring
|
36 |
+
_CONFIG_FOR_DOC = "ASTConfig"
|
37 |
+
|
38 |
+
# Base docstring
|
39 |
+
_CHECKPOINT_FOR_DOC = "MIT/ast-finetuned-audioset-10-10-0.4593"
|
40 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 1214, 768]
|
41 |
+
|
42 |
+
# Audio classification docstring
|
43 |
+
_SEQ_CLASS_CHECKPOINT = "MIT/ast-finetuned-audioset-10-10-0.4593"
|
44 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'Speech'"
|
45 |
+
_SEQ_CLASS_EXPECTED_LOSS = 0.17
|
46 |
+
|
47 |
+
|
48 |
+
class ASTEmbeddings(nn.Module):
|
49 |
+
"""
|
50 |
+
Construct the CLS token, position and patch embeddings.
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(self, config: ASTConfig) -> None:
|
54 |
+
super().__init__()
|
55 |
+
|
56 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
57 |
+
self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
58 |
+
self.patch_embeddings = ASTPatchEmbeddings(config)
|
59 |
+
|
60 |
+
frequency_out_dimension, time_out_dimension = self.get_shape(config)
|
61 |
+
num_patches = frequency_out_dimension * time_out_dimension
|
62 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size))
|
63 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
64 |
+
self.config = config
|
65 |
+
|
66 |
+
def get_shape(self, config):
|
67 |
+
# see Karpathy's cs231n blog on how to calculate the output dimensions
|
68 |
+
# https://cs231n.github.io/convolutional-networks/#conv
|
69 |
+
if config.frequency_patch_size is not None:
|
70 |
+
frequency_out_dimension = (config.num_mel_bins - config.frequency_patch_size) // config.frequency_stride + 1
|
71 |
+
else:
|
72 |
+
frequency_out_dimension = (config.num_mel_bins - config.patch_size) // config.frequency_stride + 1
|
73 |
+
if config.time_patch_size is not None:
|
74 |
+
time_out_dimension = (config.max_length - config.time_patch_size) // config.time_stride + 1
|
75 |
+
else:
|
76 |
+
time_out_dimension = (config.max_length - config.patch_size) // config.time_stride + 1
|
77 |
+
|
78 |
+
return frequency_out_dimension, time_out_dimension
|
79 |
+
|
80 |
+
def forward(self, input_values: torch.Tensor) -> torch.Tensor:
|
81 |
+
batch_size = input_values.shape[0]
|
82 |
+
embeddings = self.patch_embeddings(input_values)
|
83 |
+
|
84 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
85 |
+
distillation_tokens = self.distillation_token.expand(batch_size, -1, -1)
|
86 |
+
embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1)
|
87 |
+
embeddings = embeddings + self.position_embeddings
|
88 |
+
embeddings = self.dropout(embeddings)
|
89 |
+
|
90 |
+
return embeddings
|
91 |
+
|
92 |
+
|
93 |
+
class ASTPatchEmbeddings(nn.Module):
|
94 |
+
"""
|
95 |
+
This class turns `input_values` into the initial `hidden_states` (patch embeddings) of shape `(batch_size,
|
96 |
+
seq_length, hidden_size)` to be consumed by a Transformer.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, config):
|
100 |
+
super().__init__()
|
101 |
+
if config.frequency_patch_size is not None and config.time_patch_size is not None:
|
102 |
+
kernel_size = (config.frequency_patch_size, config.time_patch_size)
|
103 |
+
else:
|
104 |
+
kernel_size = (config.patch_size, config.patch_size)
|
105 |
+
frequency_stride = config.frequency_stride
|
106 |
+
time_stride = config.time_stride
|
107 |
+
|
108 |
+
self.projection = nn.Conv2d(
|
109 |
+
1, config.hidden_size, kernel_size=kernel_size, stride=(frequency_stride, time_stride)
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(self, input_values: torch.Tensor) -> torch.Tensor:
|
113 |
+
input_values = input_values.unsqueeze(1)
|
114 |
+
input_values = input_values.transpose(2, 3)
|
115 |
+
embeddings = self.projection(input_values).flatten(2).transpose(1, 2)
|
116 |
+
return embeddings
|
117 |
+
|
118 |
+
|
119 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->AST
|
120 |
+
class ASTSelfAttention(nn.Module):
|
121 |
+
def __init__(self, config: ASTConfig) -> None:
|
122 |
+
super().__init__()
|
123 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
124 |
+
raise ValueError(
|
125 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
126 |
+
f"heads {config.num_attention_heads}."
|
127 |
+
)
|
128 |
+
|
129 |
+
self.num_attention_heads = config.num_attention_heads
|
130 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
131 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
132 |
+
|
133 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
134 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
135 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
136 |
+
|
137 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
138 |
+
|
139 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
140 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
141 |
+
x = x.view(new_x_shape)
|
142 |
+
return x.permute(0, 2, 1, 3)
|
143 |
+
|
144 |
+
def forward(
|
145 |
+
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
|
146 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
147 |
+
mixed_query_layer = self.query(hidden_states)
|
148 |
+
|
149 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
150 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
151 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
152 |
+
|
153 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
154 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
155 |
+
|
156 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
157 |
+
|
158 |
+
# Normalize the attention scores to probabilities.
|
159 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
160 |
+
|
161 |
+
# This is actually dropping out entire tokens to attend to, which might
|
162 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
163 |
+
attention_probs = self.dropout(attention_probs)
|
164 |
+
|
165 |
+
# Mask heads if we want to
|
166 |
+
if head_mask is not None:
|
167 |
+
attention_probs = attention_probs * head_mask
|
168 |
+
|
169 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
170 |
+
|
171 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
172 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
173 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
174 |
+
|
175 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
176 |
+
|
177 |
+
return outputs
|
178 |
+
|
179 |
+
|
180 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSdpaSelfAttention with ViT->AST
|
181 |
+
class ASTSdpaSelfAttention(ASTSelfAttention):
|
182 |
+
def __init__(self, config: ASTConfig) -> None:
|
183 |
+
super().__init__(config)
|
184 |
+
self.attention_probs_dropout_prob = config.attention_probs_dropout_prob
|
185 |
+
|
186 |
+
def forward(
|
187 |
+
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
|
188 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
189 |
+
mixed_query_layer = self.query(hidden_states)
|
190 |
+
|
191 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
192 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
193 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
194 |
+
|
195 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
196 |
+
query_layer,
|
197 |
+
key_layer,
|
198 |
+
value_layer,
|
199 |
+
head_mask,
|
200 |
+
self.attention_probs_dropout_prob if self.training else 0.0,
|
201 |
+
is_causal=False,
|
202 |
+
scale=None,
|
203 |
+
)
|
204 |
+
|
205 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
206 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
207 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
208 |
+
|
209 |
+
return context_layer, None
|
210 |
+
|
211 |
+
|
212 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->AST
|
213 |
+
class ASTSelfOutput(nn.Module):
|
214 |
+
"""
|
215 |
+
The residual connection is defined in ASTLayer instead of here (as is the case with other models), due to the
|
216 |
+
layernorm applied before each block.
|
217 |
+
"""
|
218 |
+
|
219 |
+
def __init__(self, config: ASTConfig) -> None:
|
220 |
+
super().__init__()
|
221 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
222 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
223 |
+
|
224 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
225 |
+
hidden_states = self.dense(hidden_states)
|
226 |
+
hidden_states = self.dropout(hidden_states)
|
227 |
+
|
228 |
+
return hidden_states
|
229 |
+
|
230 |
+
|
231 |
+
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->AST
|
232 |
+
class ASTAttention(nn.Module):
|
233 |
+
def __init__(self, config: ASTConfig) -> None:
|
234 |
+
super().__init__()
|
235 |
+
self.attention = ASTSelfAttention(config)
|
236 |
+
self.output = ASTSelfOutput(config)
|
237 |
+
self.pruned_heads = set()
|
238 |
+
|
239 |
+
def prune_heads(self, heads: Set[int]) -> None:
|
240 |
+
if len(heads) == 0:
|
241 |
+
return
|
242 |
+
heads, index = find_pruneable_heads_and_indices(
|
243 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
244 |
+
)
|
245 |
+
|
246 |
+
# Prune linear layers
|
247 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
248 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
249 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
250 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
251 |
+
|
252 |
+
# Update hyper params and store pruned heads
|
253 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
254 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
255 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
256 |
+
|
257 |
+
def forward(
|
258 |
+
self,
|
259 |
+
hidden_states: torch.Tensor,
|
260 |
+
head_mask: Optional[torch.Tensor] = None,
|
261 |
+
output_attentions: bool = False,
|
262 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
263 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
264 |
+
|
265 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
266 |
+
|
267 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
268 |
+
return outputs
|
269 |
+
|
270 |
+
|
271 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSdpaAttention with ViT->AST
|
272 |
+
class ASTSdpaAttention(ASTAttention):
|
273 |
+
def __init__(self, config: ASTConfig) -> None:
|
274 |
+
super().__init__(config)
|
275 |
+
self.attention = ASTSdpaSelfAttention(config)
|
276 |
+
|
277 |
+
|
278 |
+
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->AST
|
279 |
+
class ASTIntermediate(nn.Module):
|
280 |
+
def __init__(self, config: ASTConfig) -> None:
|
281 |
+
super().__init__()
|
282 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
283 |
+
if isinstance(config.hidden_act, str):
|
284 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
285 |
+
else:
|
286 |
+
self.intermediate_act_fn = config.hidden_act
|
287 |
+
|
288 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
289 |
+
hidden_states = self.dense(hidden_states)
|
290 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
291 |
+
|
292 |
+
return hidden_states
|
293 |
+
|
294 |
+
|
295 |
+
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->AST
|
296 |
+
class ASTOutput(nn.Module):
|
297 |
+
def __init__(self, config: ASTConfig) -> None:
|
298 |
+
super().__init__()
|
299 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
300 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
301 |
+
|
302 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
303 |
+
hidden_states = self.dense(hidden_states)
|
304 |
+
hidden_states = self.dropout(hidden_states)
|
305 |
+
|
306 |
+
hidden_states = hidden_states + input_tensor
|
307 |
+
|
308 |
+
return hidden_states
|
309 |
+
|
310 |
+
|
311 |
+
AST_ATTENTION_CLASSES = {
|
312 |
+
"eager": ASTAttention,
|
313 |
+
"sdpa": ASTSdpaAttention,
|
314 |
+
}
|
315 |
+
|
316 |
+
|
317 |
+
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->AST,VIT->AST
|
318 |
+
class ASTLayer(nn.Module):
|
319 |
+
"""This corresponds to the Block class in the timm implementation."""
|
320 |
+
|
321 |
+
def __init__(self, config: ASTConfig) -> None:
|
322 |
+
super().__init__()
|
323 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
324 |
+
self.seq_len_dim = 1
|
325 |
+
self.attention = AST_ATTENTION_CLASSES[config._attn_implementation](config)
|
326 |
+
self.intermediate = ASTIntermediate(config)
|
327 |
+
self.output = ASTOutput(config)
|
328 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
329 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
330 |
+
|
331 |
+
def forward(
|
332 |
+
self,
|
333 |
+
hidden_states: torch.Tensor,
|
334 |
+
head_mask: Optional[torch.Tensor] = None,
|
335 |
+
output_attentions: bool = False,
|
336 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
337 |
+
self_attention_outputs = self.attention(
|
338 |
+
self.layernorm_before(hidden_states), # in AST, layernorm is applied before self-attention
|
339 |
+
head_mask,
|
340 |
+
output_attentions=output_attentions,
|
341 |
+
)
|
342 |
+
attention_output = self_attention_outputs[0]
|
343 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
344 |
+
|
345 |
+
# first residual connection
|
346 |
+
hidden_states = attention_output + hidden_states
|
347 |
+
|
348 |
+
# in AST, layernorm is also applied after self-attention
|
349 |
+
layer_output = self.layernorm_after(hidden_states)
|
350 |
+
layer_output = self.intermediate(layer_output)
|
351 |
+
|
352 |
+
# second residual connection is done here
|
353 |
+
layer_output = self.output(layer_output, hidden_states)
|
354 |
+
|
355 |
+
outputs = (layer_output,) + outputs
|
356 |
+
|
357 |
+
return outputs
|
358 |
+
|
359 |
+
|
360 |
+
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->AST
|
361 |
+
class ASTEncoder(nn.Module):
|
362 |
+
def __init__(self, config: ASTConfig) -> None:
|
363 |
+
super().__init__()
|
364 |
+
self.config = config
|
365 |
+
self.layer = nn.ModuleList([ASTLayer(config) for _ in range(config.num_hidden_layers)])
|
366 |
+
self.gradient_checkpointing = False
|
367 |
+
|
368 |
+
def forward(
|
369 |
+
self,
|
370 |
+
hidden_states: torch.Tensor,
|
371 |
+
head_mask: Optional[torch.Tensor] = None,
|
372 |
+
output_attentions: bool = False,
|
373 |
+
output_hidden_states: bool = False,
|
374 |
+
return_dict: bool = True,
|
375 |
+
) -> Union[tuple, BaseModelOutput]:
|
376 |
+
all_hidden_states = () if output_hidden_states else None
|
377 |
+
all_self_attentions = () if output_attentions else None
|
378 |
+
|
379 |
+
for i, layer_module in enumerate(self.layer):
|
380 |
+
if output_hidden_states:
|
381 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
382 |
+
|
383 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
384 |
+
|
385 |
+
if self.gradient_checkpointing and self.training:
|
386 |
+
layer_outputs = self._gradient_checkpointing_func(
|
387 |
+
layer_module.__call__,
|
388 |
+
hidden_states,
|
389 |
+
layer_head_mask,
|
390 |
+
output_attentions,
|
391 |
+
)
|
392 |
+
else:
|
393 |
+
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
|
394 |
+
|
395 |
+
hidden_states = layer_outputs[0]
|
396 |
+
|
397 |
+
if output_attentions:
|
398 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
399 |
+
|
400 |
+
if output_hidden_states:
|
401 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
402 |
+
|
403 |
+
if not return_dict:
|
404 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
405 |
+
return BaseModelOutput(
|
406 |
+
last_hidden_state=hidden_states,
|
407 |
+
hidden_states=all_hidden_states,
|
408 |
+
attentions=all_self_attentions,
|
409 |
+
)
|
410 |
+
|
411 |
+
|
412 |
+
class ASTPreTrainedModel(PreTrainedModel):
|
413 |
+
"""
|
414 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
415 |
+
models.
|
416 |
+
"""
|
417 |
+
|
418 |
+
config_class = ASTConfig
|
419 |
+
base_model_prefix = "audio_spectrogram_transformer"
|
420 |
+
main_input_name = "input_values"
|
421 |
+
supports_gradient_checkpointing = True
|
422 |
+
_supports_sdpa = True
|
423 |
+
|
424 |
+
# Copied from transformers.models.deit.modeling_deit.DeiTPreTrainedModel._init_weights
|
425 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
426 |
+
"""Initialize the weights"""
|
427 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
428 |
+
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
429 |
+
# `trunc_normal_cpu` not implemented in `half` issues
|
430 |
+
module.weight.data = nn.init.trunc_normal_(
|
431 |
+
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
|
432 |
+
).to(module.weight.dtype)
|
433 |
+
if module.bias is not None:
|
434 |
+
module.bias.data.zero_()
|
435 |
+
elif isinstance(module, nn.LayerNorm):
|
436 |
+
module.bias.data.zero_()
|
437 |
+
module.weight.data.fill_(1.0)
|
438 |
+
|
439 |
+
|
440 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING = r"""
|
441 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
442 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
443 |
+
behavior.
|
444 |
+
|
445 |
+
Parameters:
|
446 |
+
config ([`ASTConfig`]):
|
447 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
448 |
+
load the weights associated with the model, only the configuration. Check out the
|
449 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
450 |
+
"""
|
451 |
+
|
452 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING = r"""
|
453 |
+
Args:
|
454 |
+
input_values (`torch.FloatTensor` of shape `(batch_size, max_length, num_mel_bins)`):
|
455 |
+
Float values mel features extracted from the raw audio waveform. Raw audio waveform can be obtained by
|
456 |
+
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
|
457 |
+
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
458 |
+
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
459 |
+
tensor of type `torch.FloatTensor`. See [`~ASTFeatureExtractor.__call__`]
|
460 |
+
|
461 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
462 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
463 |
+
|
464 |
+
- 1 indicates the head is **not masked**,
|
465 |
+
- 0 indicates the head is **masked**.
|
466 |
+
|
467 |
+
output_attentions (`bool`, *optional*):
|
468 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
469 |
+
tensors for more detail.
|
470 |
+
output_hidden_states (`bool`, *optional*):
|
471 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
472 |
+
more detail.
|
473 |
+
return_dict (`bool`, *optional*):
|
474 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
475 |
+
"""
|
476 |
+
|
477 |
+
|
478 |
+
@add_start_docstrings(
|
479 |
+
"The bare AST Model transformer outputting raw hidden-states without any specific head on top.",
|
480 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING,
|
481 |
+
)
|
482 |
+
class ASTModel(ASTPreTrainedModel):
|
483 |
+
def __init__(self, config: ASTConfig) -> None:
|
484 |
+
super().__init__(config)
|
485 |
+
self.config = config
|
486 |
+
|
487 |
+
self.embeddings = ASTEmbeddings(config)
|
488 |
+
self.encoder = ASTEncoder(config)
|
489 |
+
|
490 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
491 |
+
|
492 |
+
# Initialize weights and apply final processing
|
493 |
+
self.post_init()
|
494 |
+
|
495 |
+
def get_input_embeddings(self) -> ASTPatchEmbeddings:
|
496 |
+
return self.embeddings.patch_embeddings
|
497 |
+
|
498 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
499 |
+
"""
|
500 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
501 |
+
class PreTrainedModel
|
502 |
+
"""
|
503 |
+
for layer, heads in heads_to_prune.items():
|
504 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
505 |
+
|
506 |
+
@add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING)
|
507 |
+
@add_code_sample_docstrings(
|
508 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
509 |
+
output_type=BaseModelOutputWithPooling,
|
510 |
+
config_class=_CONFIG_FOR_DOC,
|
511 |
+
modality="audio",
|
512 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
513 |
+
)
|
514 |
+
def forward(
|
515 |
+
self,
|
516 |
+
input_values: Optional[torch.Tensor] = None,
|
517 |
+
head_mask: Optional[torch.Tensor] = None,
|
518 |
+
output_attentions: Optional[bool] = None,
|
519 |
+
output_hidden_states: Optional[bool] = None,
|
520 |
+
return_dict: Optional[bool] = None,
|
521 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
522 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
523 |
+
output_hidden_states = (
|
524 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
525 |
+
)
|
526 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
527 |
+
|
528 |
+
if input_values is None:
|
529 |
+
raise ValueError("You have to specify input_values")
|
530 |
+
|
531 |
+
# Prepare head mask if needed
|
532 |
+
# 1.0 in head_mask indicate we keep the head
|
533 |
+
# attention_probs has shape bsz x n_heads x N x N
|
534 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
535 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
536 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
537 |
+
|
538 |
+
embedding_output = self.embeddings(input_values)
|
539 |
+
|
540 |
+
encoder_outputs = self.encoder(
|
541 |
+
embedding_output,
|
542 |
+
head_mask=head_mask,
|
543 |
+
output_attentions=output_attentions,
|
544 |
+
output_hidden_states=output_hidden_states,
|
545 |
+
return_dict=return_dict,
|
546 |
+
)
|
547 |
+
sequence_output = encoder_outputs[0]
|
548 |
+
sequence_output = self.layernorm(sequence_output)
|
549 |
+
|
550 |
+
pooled_output = (sequence_output[:, 0] + sequence_output[:, 1]) / 2
|
551 |
+
|
552 |
+
if not return_dict:
|
553 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
554 |
+
|
555 |
+
return BaseModelOutputWithPooling(
|
556 |
+
last_hidden_state=sequence_output,
|
557 |
+
pooler_output=pooled_output,
|
558 |
+
hidden_states=encoder_outputs.hidden_states,
|
559 |
+
attentions=encoder_outputs.attentions,
|
560 |
+
)
|
561 |
+
|
562 |
+
|
563 |
+
class ASTMLPHead(nn.Module):
|
564 |
+
def __init__(self, config: ASTConfig):
|
565 |
+
super().__init__()
|
566 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
567 |
+
self.dense = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
568 |
+
|
569 |
+
def forward(self, hidden_state):
|
570 |
+
hidden_state = self.layernorm(hidden_state)
|
571 |
+
hidden_state = self.dense(hidden_state)
|
572 |
+
return hidden_state
|
573 |
+
|
574 |
+
|
575 |
+
@add_start_docstrings(
|
576 |
+
"""
|
577 |
+
Audio Spectrogram Transformer model with an audio classification head on top (a linear layer on top of the pooled
|
578 |
+
output) e.g. for datasets like AudioSet, Speech Commands v2.
|
579 |
+
""",
|
580 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING,
|
581 |
+
)
|
582 |
+
class ASTForAudioClassification(ASTPreTrainedModel):
|
583 |
+
def __init__(self, config: ASTConfig) -> None:
|
584 |
+
super().__init__(config)
|
585 |
+
|
586 |
+
self.num_labels = config.num_labels
|
587 |
+
self.audio_spectrogram_transformer = ASTModel(config)
|
588 |
+
|
589 |
+
# Classifier head
|
590 |
+
self.classifier = ASTMLPHead(config)
|
591 |
+
|
592 |
+
# Initialize weights and apply final processing
|
593 |
+
self.post_init()
|
594 |
+
|
595 |
+
@add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING)
|
596 |
+
@add_code_sample_docstrings(
|
597 |
+
checkpoint=_SEQ_CLASS_CHECKPOINT,
|
598 |
+
output_type=SequenceClassifierOutput,
|
599 |
+
config_class=_CONFIG_FOR_DOC,
|
600 |
+
modality="audio",
|
601 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
602 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
603 |
+
)
|
604 |
+
def forward(
|
605 |
+
self,
|
606 |
+
input_values: Optional[torch.Tensor] = None,
|
607 |
+
head_mask: Optional[torch.Tensor] = None,
|
608 |
+
labels: Optional[torch.Tensor] = None,
|
609 |
+
output_attentions: Optional[bool] = None,
|
610 |
+
output_hidden_states: Optional[bool] = None,
|
611 |
+
return_dict: Optional[bool] = None,
|
612 |
+
) -> Union[tuple, SequenceClassifierOutput]:
|
613 |
+
r"""
|
614 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
615 |
+
Labels for computing the audio classification/regression loss. Indices should be in `[0, ...,
|
616 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
617 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
618 |
+
"""
|
619 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
620 |
+
|
621 |
+
outputs = self.audio_spectrogram_transformer(
|
622 |
+
input_values,
|
623 |
+
head_mask=head_mask,
|
624 |
+
output_attentions=output_attentions,
|
625 |
+
output_hidden_states=output_hidden_states,
|
626 |
+
return_dict=return_dict,
|
627 |
+
)
|
628 |
+
|
629 |
+
pooled_output = outputs[1]
|
630 |
+
logits = self.classifier(pooled_output)
|
631 |
+
|
632 |
+
loss = None
|
633 |
+
if labels is not None:
|
634 |
+
if self.config.problem_type is None:
|
635 |
+
if self.num_labels == 1:
|
636 |
+
self.config.problem_type = "regression"
|
637 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
638 |
+
self.config.problem_type = "single_label_classification"
|
639 |
+
else:
|
640 |
+
self.config.problem_type = "multi_label_classification"
|
641 |
+
|
642 |
+
if self.config.problem_type == "regression":
|
643 |
+
loss_fct = MSELoss()
|
644 |
+
if self.num_labels == 1:
|
645 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
646 |
+
else:
|
647 |
+
loss = loss_fct(logits, labels)
|
648 |
+
elif self.config.problem_type == "single_label_classification":
|
649 |
+
loss_fct = CrossEntropyLoss()
|
650 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
651 |
+
elif self.config.problem_type == "multi_label_classification":
|
652 |
+
loss_fct = BCEWithLogitsLoss()
|
653 |
+
loss = loss_fct(logits, labels)
|
654 |
+
|
655 |
+
if not return_dict:
|
656 |
+
output = (logits,) + outputs[2:]
|
657 |
+
return ((loss,) + output) if loss is not None else output
|
658 |
+
|
659 |
+
return SequenceClassifierOutput(
|
660 |
+
loss=loss,
|
661 |
+
logits=logits,
|
662 |
+
hidden_states=outputs.hidden_states,
|
663 |
+
attentions=outputs.attentions,
|
664 |
+
)
|