|
import torch |
|
import torchvision.transforms as transforms |
|
import cv2 |
|
import numpy as np |
|
|
|
from .model import BiSeNet |
|
|
|
|
|
def init_parser(pth_path): |
|
n_classes = 19 |
|
net = BiSeNet(n_classes=n_classes) |
|
net.cuda() |
|
net.load_state_dict(torch.load(pth_path)) |
|
net.eval() |
|
return net |
|
|
|
|
|
def image_to_parsing(img, net): |
|
img = cv2.resize(img, (512, 512)) |
|
img = img[:,:,::-1] |
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) |
|
]) |
|
img = transform(img.copy()) |
|
img = torch.unsqueeze(img, 0) |
|
|
|
with torch.no_grad(): |
|
img = img.cuda() |
|
out = net(img)[0] |
|
parsing = out.squeeze(0).cpu().numpy().argmax(0) |
|
return parsing |
|
|
|
|
|
def get_mask(parsing, classes): |
|
res = parsing == classes[0] |
|
for val in classes[1:]: |
|
res += parsing == val |
|
return res |
|
|
|
|
|
def swap_regions(source, target, net): |
|
parsing = image_to_parsing(source, net) |
|
face_classes = [1, 11, 12, 13] |
|
|
|
mask = get_mask(parsing, face_classes) |
|
mask = np.repeat(np.expand_dims(mask, axis=2), 3, 2) |
|
result = (1 - mask) * cv2.resize(source, (512, 512)) + mask * cv2.resize(target, (512, 512)) |
|
result = cv2.resize(result.astype("float32"), (source.shape[1], source.shape[0])) |
|
return result |
|
|