|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.model_zoo as modelzoo |
|
|
|
|
|
|
|
resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth' |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
def __init__(self, in_chan, out_chan, stride=1): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(in_chan, out_chan, stride) |
|
self.bn1 = nn.BatchNorm2d(out_chan) |
|
self.conv2 = conv3x3(out_chan, out_chan) |
|
self.bn2 = nn.BatchNorm2d(out_chan) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = None |
|
if in_chan != out_chan or stride != 1: |
|
self.downsample = nn.Sequential( |
|
nn.Conv2d(in_chan, out_chan, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(out_chan), |
|
) |
|
|
|
def forward(self, x): |
|
residual = self.conv1(x) |
|
residual = F.relu(self.bn1(residual)) |
|
residual = self.conv2(residual) |
|
residual = self.bn2(residual) |
|
|
|
shortcut = x |
|
if self.downsample is not None: |
|
shortcut = self.downsample(x) |
|
|
|
out = shortcut + residual |
|
out = self.relu(out) |
|
return out |
|
|
|
|
|
def create_layer_basic(in_chan, out_chan, bnum, stride=1): |
|
layers = [BasicBlock(in_chan, out_chan, stride=stride)] |
|
for i in range(bnum-1): |
|
layers.append(BasicBlock(out_chan, out_chan, stride=1)) |
|
return nn.Sequential(*layers) |
|
|
|
|
|
class Resnet18(nn.Module): |
|
def __init__(self): |
|
super(Resnet18, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1) |
|
self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2) |
|
self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2) |
|
self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2) |
|
self.init_weight() |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = F.relu(self.bn1(x)) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
feat8 = self.layer2(x) |
|
feat16 = self.layer3(feat8) |
|
feat32 = self.layer4(feat16) |
|
return feat8, feat16, feat32 |
|
|
|
def init_weight(self): |
|
state_dict = modelzoo.load_url(resnet18_url) |
|
self_state_dict = self.state_dict() |
|
for k, v in state_dict.items(): |
|
if 'fc' in k: continue |
|
self_state_dict.update({k: v}) |
|
self.load_state_dict(self_state_dict) |
|
|
|
def get_params(self): |
|
wd_params, nowd_params = [], [] |
|
for name, module in self.named_modules(): |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
wd_params.append(module.weight) |
|
if not module.bias is None: |
|
nowd_params.append(module.bias) |
|
elif isinstance(module, nn.BatchNorm2d): |
|
nowd_params += list(module.parameters()) |
|
return wd_params, nowd_params |
|
|
|
|
|
if __name__ == "__main__": |
|
net = Resnet18() |
|
x = torch.randn(16, 3, 224, 224) |
|
out = net(x) |
|
print(out[0].size()) |
|
print(out[1].size()) |
|
print(out[2].size()) |
|
net.get_params() |
|
|