|
import logging |
|
import glob |
|
from tqdm import tqdm |
|
import numpy as np |
|
import torch |
|
import cv2 |
|
|
|
|
|
class FaceDetector(object): |
|
"""An abstract class representing a face detector. |
|
|
|
Any other face detection implementation must subclass it. All subclasses |
|
must implement ``detect_from_image``, that return a list of detected |
|
bounding boxes. Optionally, for speed considerations detect from path is |
|
recommended. |
|
""" |
|
|
|
def __init__(self, device, verbose): |
|
self.device = device |
|
self.verbose = verbose |
|
|
|
if verbose: |
|
if 'cpu' in device: |
|
logger = logging.getLogger(__name__) |
|
logger.warning("Detection running on CPU, this may be potentially slow.") |
|
|
|
if 'cpu' not in device and 'cuda' not in device: |
|
if verbose: |
|
logger.error("Expected values for device are: {cpu, cuda} but got: %s", device) |
|
raise ValueError |
|
|
|
def detect_from_image(self, tensor_or_path): |
|
"""Detects faces in a given image. |
|
|
|
This function detects the faces present in a provided BGR(usually) |
|
image. The input can be either the image itself or the path to it. |
|
|
|
Arguments: |
|
tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path |
|
to an image or the image itself. |
|
|
|
Example:: |
|
|
|
>>> path_to_image = 'data/image_01.jpg' |
|
... detected_faces = detect_from_image(path_to_image) |
|
[A list of bounding boxes (x1, y1, x2, y2)] |
|
>>> image = cv2.imread(path_to_image) |
|
... detected_faces = detect_from_image(image) |
|
[A list of bounding boxes (x1, y1, x2, y2)] |
|
|
|
""" |
|
raise NotImplementedError |
|
|
|
def detect_from_directory(self, path, extensions=['.jpg', '.png'], recursive=False, show_progress_bar=True): |
|
"""Detects faces from all the images present in a given directory. |
|
|
|
Arguments: |
|
path {string} -- a string containing a path that points to the folder containing the images |
|
|
|
Keyword Arguments: |
|
extensions {list} -- list of string containing the extensions to be |
|
consider in the following format: ``.extension_name`` (default: |
|
{['.jpg', '.png']}) recursive {bool} -- option wherever to scan the |
|
folder recursively (default: {False}) show_progress_bar {bool} -- |
|
display a progressbar (default: {True}) |
|
|
|
Example: |
|
>>> directory = 'data' |
|
... detected_faces = detect_from_directory(directory) |
|
{A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]} |
|
|
|
""" |
|
if self.verbose: |
|
logger = logging.getLogger(__name__) |
|
|
|
if len(extensions) == 0: |
|
if self.verbose: |
|
logger.error("Expected at list one extension, but none was received.") |
|
raise ValueError |
|
|
|
if self.verbose: |
|
logger.info("Constructing the list of images.") |
|
additional_pattern = '/**/*' if recursive else '/*' |
|
files = [] |
|
for extension in extensions: |
|
files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive)) |
|
|
|
if self.verbose: |
|
logger.info("Finished searching for images. %s images found", len(files)) |
|
logger.info("Preparing to run the detection.") |
|
|
|
predictions = {} |
|
for image_path in tqdm(files, disable=not show_progress_bar): |
|
if self.verbose: |
|
logger.info("Running the face detector on image: %s", image_path) |
|
predictions[image_path] = self.detect_from_image(image_path) |
|
|
|
if self.verbose: |
|
logger.info("The detector was successfully run on all %s images", len(files)) |
|
|
|
return predictions |
|
|
|
@property |
|
def reference_scale(self): |
|
raise NotImplementedError |
|
|
|
@property |
|
def reference_x_shift(self): |
|
raise NotImplementedError |
|
|
|
@property |
|
def reference_y_shift(self): |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def tensor_or_path_to_ndarray(tensor_or_path, rgb=True): |
|
"""Convert path (represented as a string) or torch.tensor to a numpy.ndarray |
|
|
|
Arguments: |
|
tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself |
|
""" |
|
if isinstance(tensor_or_path, str): |
|
return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1] |
|
elif torch.is_tensor(tensor_or_path): |
|
|
|
return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy() |
|
elif isinstance(tensor_or_path, np.ndarray): |
|
return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path |
|
else: |
|
raise TypeError |
|
|