Feature Extraction
Transformers
Safetensors
new
custom_code
text-embeddings-inference
affiliation-clustering-0.3b / generate_embeddings.py
adambuttrick's picture
Add script for generating embeddings
ff2449f verified
import os
import sys
import argparse
import logging
from pathlib import Path
from typing import List, Dict, Any, Optional
import warnings
import torch
import torch.nn.functional as F
import pandas as pd
import numpy as np
from tqdm import tqdm
from datasets import Dataset, DatasetDict
from transformers import AutoModel, AutoTokenizer
warnings.filterwarnings('ignore')
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('embedding_generation.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class AffiliationEmbedder:
def __init__(
self,
model_path: str = "./affiliation-clustering-0.3b",
device: str = None,
batch_size: int = 32,
max_length: int = 512,
use_fp16: bool = False
):
self.model_path = model_path
self.batch_size = batch_size
self.max_length = max_length
self.use_fp16 = use_fp16
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device(device)
logger.info(f"Using device: {self.device}")
if self.device.type == 'cuda':
logger.info(f"GPU: {torch.cuda.get_device_name()}")
logger.info(f"Memory allocated: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
self._load_model()
def _load_model(self):
logger.info(f"Loading model from {self.model_path}")
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_path,
trust_remote_code=True
)
self.model = AutoModel.from_pretrained(
self.model_path,
trust_remote_code=True
)
self.model = self.model.to(self.device)
if self.use_fp16 and self.device.type == 'cuda':
self.model = self.model.half()
logger.info("Using FP16 mixed precision")
self.model.eval()
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise
def encode_batch(self, texts: List[str]) -> np.ndarray:
encoded = self.tokenizer(
texts,
padding=True,
truncation=True,
max_length=self.max_length,
return_tensors='pt'
)
encoded = {k: v.to(self.device) for k, v in encoded.items()}
with torch.no_grad():
outputs = self.model(**encoded)
if hasattr(outputs, 'pooler_output') and outputs.pooler_output is not None:
embeddings = outputs.pooler_output
else:
token_embeddings = outputs.last_hidden_state
attention_mask = encoded['attention_mask'].unsqueeze(-1)
masked_embeddings = token_embeddings * attention_mask
embeddings = masked_embeddings.sum(dim=1) / attention_mask.sum(dim=1)
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings = embeddings.cpu().numpy()
if self.use_fp16:
embeddings = embeddings.astype(np.float32)
return embeddings
def process_dataset(
self,
data_path: str,
output_path: str,
checkpoint_interval: int = 1000
) -> None:
logger.info(f"Processing dataset: {data_path}")
df = pd.read_parquet(data_path)
logger.info(f"Loaded {len(df)} samples")
checkpoint_path = output_path.replace('.parquet', '_checkpoint.parquet')
start_idx = 0
if os.path.exists(checkpoint_path):
logger.info(f"Found checkpoint at {checkpoint_path}")
checkpoint_df = pd.read_parquet(checkpoint_path)
start_idx = len(checkpoint_df)
logger.info(f"Resuming from index {start_idx}")
all_embeddings = []
processed_rows = []
total_batches = (len(df) - start_idx + self.batch_size - 1) // self.batch_size
with tqdm(total=total_batches, desc="Generating embeddings") as pbar:
for i in range(start_idx, len(df), self.batch_size):
batch_df = df.iloc[i:i+self.batch_size]
texts = batch_df['affiliation_name'].tolist()
try:
batch_embeddings = self.encode_batch(texts)
for j, embedding in enumerate(batch_embeddings):
row_idx = i + j
row_data = df.iloc[row_idx].to_dict()
row_data['embedding'] = embedding
processed_rows.append(row_data)
if len(processed_rows) % checkpoint_interval == 0:
self._save_checkpoint(processed_rows, checkpoint_path)
logger.info(f"Checkpoint saved at {len(processed_rows)} samples")
pbar.update(1)
except Exception as e:
logger.error(f"Error processing batch at index {i}: {e}")
if processed_rows:
self._save_checkpoint(processed_rows, checkpoint_path)
raise
result_df = pd.DataFrame(processed_rows)
logger.info(f"Saving embeddings to {output_path}")
result_df.to_parquet(output_path, compression='snappy')
if os.path.exists(checkpoint_path):
os.remove(checkpoint_path)
logger.info("Checkpoint file removed")
logger.info(f"Successfully generated embeddings for {len(result_df)} samples")
embedding_dim = len(result_df['embedding'].iloc[0])
logger.info(f"Embedding dimension: {embedding_dim}")
logger.info(f"Output file size: {os.path.getsize(output_path) / 1e6:.2f} MB")
def _save_checkpoint(self, processed_rows: List[Dict], checkpoint_path: str):
checkpoint_df = pd.DataFrame(processed_rows)
checkpoint_df.to_parquet(checkpoint_path, compression='snappy')
def main():
parser = argparse.ArgumentParser(
description="Generate embeddings for affiliation strings"
)
parser.add_argument(
"--model-path",
type=str,
default="./affiliation-clustering-0.3b",
help="Path to the pre-trained model directory"
)
parser.add_argument(
"--data-dir",
type=str,
default="./20250727-unique-openalex-affiliations-w-ror-ids-top-1K-ror-ids-100-per-sample",
help="Directory containing the input parquet files"
)
parser.add_argument(
"--output-dir",
type=str,
default="./20250727-unique-openalex-affiliations-w-ror-ids-top-1K-ror-ids-100-per-sample-embeddings",
help="Directory to save the output embeddings"
)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size for processing"
)
parser.add_argument(
"--max-length",
type=int,
default=512,
help="Maximum sequence length for tokenization"
)
parser.add_argument(
"--device",
type=str,
default=None,
help="Device to use (cuda/cpu, auto-detect if not specified)"
)
parser.add_argument(
"--use-fp16",
action="store_true",
help="Use FP16 mixed precision for faster processing"
)
parser.add_argument(
"--checkpoint-interval",
type=int,
default=1000,
help="Save checkpoint every N batches"
)
parser.add_argument(
"--push-to-hub",
action="store_true",
help="Push the resulting dataset to Hugging Face Hub"
)
parser.add_argument(
"--hub-dataset-id",
type=str,
default=None,
help="Hugging Face Hub dataset ID (required if push-to-hub is set)"
)
args = parser.parse_args()
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
embedder = AffiliationEmbedder(
model_path=args.model_path,
device=args.device,
batch_size=args.batch_size,
max_length=args.max_length,
use_fp16=args.use_fp16
)
data_dir = Path(args.data_dir)
train_file = list(data_dir.glob("*_train.parquet"))[0]
test_file = list(data_dir.glob("*_test.parquet"))[0]
train_output = output_dir / "train_embeddings.parquet"
test_output = output_dir / "test_embeddings.parquet"
logger.info("Processing training dataset...")
embedder.process_dataset(
str(train_file),
str(train_output),
checkpoint_interval=args.checkpoint_interval
)
logger.info("Processing test dataset...")
embedder.process_dataset(
str(test_file),
str(test_output),
checkpoint_interval=args.checkpoint_interval
)
if args.push_to_hub:
if not args.hub_dataset_id:
logger.error("--hub-dataset-id is required when --push-to-hub is set")
sys.exit(1)
logger.info(f"Pushing dataset to Hugging Face Hub: {args.hub_dataset_id}")
try:
from huggingface_hub import HfApi, login
token = os.environ.get('HF_TOKEN') or os.environ.get('HUGGING_FACE_HUB_TOKEN')
if token:
login(token=token)
logger.info("Authenticated with Hugging Face Hub using token")
else:
logger.info("No HF token found in environment, attempting to use existing credentials")
logger.info("Loading generated embeddings...")
train_df = pd.read_parquet(train_output)
test_df = pd.read_parquet(test_output)
logger.info(f"Train dataset: {len(train_df)} samples")
logger.info(f"Test dataset: {len(test_df)} samples")
logger.info("Creating dataset dictionary...")
dataset_dict = DatasetDict({
'train': Dataset.from_pandas(train_df),
'test': Dataset.from_pandas(test_df)
})
logger.info(f"Pushing to hub: {args.hub_dataset_id}")
dataset_dict.push_to_hub(
args.hub_dataset_id,
private=False,
commit_message="Add affiliation embeddings generated with affiliation-clustering-0.3b model"
)
logger.info(f"Dataset successfully pushed to {args.hub_dataset_id}")
logger.info(f"View at: https://huggingface.co/datasets/{args.hub_dataset_id}")
except ImportError as e:
logger.error(f"Failed to import required libraries: {e}")
logger.error("Make sure huggingface_hub and datasets are installed")
sys.exit(1)
except Exception as e:
logger.error(f"Failed to push dataset to hub: {e}")
logger.error(f"Error type: {type(e).__name__}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
sys.exit(1)
logger.info("Embedding generation completed successfully!")
if __name__ == "__main__":
main()