|
from __future__ import print_function |
|
|
|
import sys |
|
import glob |
|
import numpy as np |
|
|
|
DATASET = 'SS-Twitter' |
|
METHOD = 'new' |
|
|
|
|
|
if len(sys.argv) == 3: |
|
DATASET = sys.argv[1] |
|
METHOD = sys.argv[2] |
|
|
|
RESULTS_DIR = 'results/' |
|
RESULT_PATHS = glob.glob('{}/{}_{}_*_results.txt'.format(RESULTS_DIR, DATASET, METHOD)) |
|
|
|
if not RESULT_PATHS: |
|
print('Could not find results for \'{}\' using \'{}\' in directory \'{}\'.'.format(DATASET, METHOD, RESULTS_DIR)) |
|
else: |
|
scores = [] |
|
for path in RESULT_PATHS: |
|
with open(path) as f: |
|
score = f.readline().split(':')[1] |
|
scores.append(float(score)) |
|
|
|
average = np.mean(scores) |
|
maximum = max(scores) |
|
minimum = min(scores) |
|
std = np.std(scores) |
|
|
|
print('Dataset: {}'.format(DATASET)) |
|
print('Method: {}'.format(METHOD)) |
|
print('Number of results: {}'.format(len(scores))) |
|
print('--------------------------') |
|
print('Average: {}'.format(average)) |
|
print('Maximum: {}'.format(maximum)) |
|
print('Minimum: {}'.format(minimum)) |
|
print('Standard deviaton: {}'.format(std)) |
|
|