|
from __future__ import print_function |
|
|
|
|
|
import sys |
|
import glob |
|
import numpy as np |
|
from os.path import dirname, abspath |
|
sys.path.insert(0, dirname(dirname(abspath(__file__)))) |
|
|
|
DATASETS = ['SE0714', 'Olympic', 'PsychExp', 'SS-Twitter', 'SS-Youtube', |
|
'SCv1', 'SV2-GEN'] |
|
|
|
def get_results(dset): |
|
METHOD = 'last' |
|
RESULTS_DIR = 'results/' |
|
RESULT_PATHS = glob.glob('{}/{}_{}_*_results.txt'.format(RESULTS_DIR, dset, METHOD)) |
|
assert len(RESULT_PATHS) |
|
|
|
scores = [] |
|
for path in RESULT_PATHS: |
|
with open(path) as f: |
|
score = f.readline().split(':')[1] |
|
scores.append(float(score)) |
|
|
|
average = np.mean(scores) |
|
maximum = max(scores) |
|
minimum = min(scores) |
|
std = np.std(scores) |
|
|
|
print('Dataset: {}'.format(dset)) |
|
print('Method: {}'.format(METHOD)) |
|
print('Number of results: {}'.format(len(scores))) |
|
print('--------------------------') |
|
print('Average: {}'.format(average)) |
|
print('Maximum: {}'.format(maximum)) |
|
print('Minimum: {}'.format(minimum)) |
|
print('Standard deviaton: {}'.format(std)) |
|
|
|
for dset in DATASETS: |
|
get_results(dset) |
|
|