|
|
|
""" Define the Attention Layer of the model. |
|
""" |
|
|
|
from __future__ import print_function, division |
|
|
|
import torch |
|
|
|
from torch.autograd import Variable |
|
from torch.nn import Module |
|
from torch.nn.parameter import Parameter |
|
|
|
class Attention(Module): |
|
""" |
|
Computes a weighted average of the different channels across timesteps. |
|
Uses 1 parameter pr. channel to compute the attention value for a single timestep. |
|
""" |
|
|
|
def __init__(self, attention_size, return_attention=False): |
|
""" Initialize the attention layer |
|
|
|
# Arguments: |
|
attention_size: Size of the attention vector. |
|
return_attention: If true, output will include the weight for each input token |
|
used for the prediction |
|
|
|
""" |
|
super(Attention, self).__init__() |
|
self.return_attention = return_attention |
|
self.attention_size = attention_size |
|
self.attention_vector = Parameter(torch.FloatTensor(attention_size)) |
|
self.attention_vector.data.normal_(std=0.05) |
|
|
|
def __repr__(self): |
|
s = '{name}({attention_size}, return attention={return_attention})' |
|
return s.format(name=self.__class__.__name__, **self.__dict__) |
|
|
|
def forward(self, inputs, input_lengths): |
|
""" Forward pass. |
|
|
|
# Arguments: |
|
inputs (Torch.Variable): Tensor of input sequences |
|
input_lengths (torch.LongTensor): Lengths of the sequences |
|
|
|
# Return: |
|
Tuple with (representations and attentions if self.return_attention else None). |
|
""" |
|
logits = inputs.matmul(self.attention_vector) |
|
unnorm_ai = (logits - logits.max()).exp() |
|
|
|
|
|
|
|
max_len = unnorm_ai.size(1) |
|
idxes = torch.arange(0, max_len, out=torch.LongTensor(max_len)).unsqueeze(0) |
|
mask = Variable((idxes < input_lengths.unsqueeze(1)).float()) |
|
|
|
|
|
masked_weights = unnorm_ai * mask |
|
att_sums = masked_weights.sum(dim=1, keepdim=True) |
|
attentions = masked_weights.div(att_sums) |
|
|
|
|
|
weighted = torch.mul(inputs, attentions.unsqueeze(-1).expand_as(inputs)) |
|
|
|
|
|
representations = weighted.sum(dim=1) |
|
|
|
return (representations, attentions if self.return_attention else None) |
|
|