|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_utils import Conv1D, PreTrainedModel |
|
from transformers.utils import logging |
|
from .config_codesage import CodeSageConfig |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPooling, |
|
MaskedLMOutput, |
|
SequenceClassifierOutput |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CODESAGE_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"codesage/codesage-small-v2", |
|
"codesage/codesage-base-v2", |
|
"codesage/codesage-large-v2", |
|
|
|
] |
|
|
|
|
|
class CodeSageAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = config.hidden_size // self.num_heads |
|
if self.head_dim * self.num_heads != config.hidden_size: |
|
raise ValueError( |
|
f"`hidden_size` must be divisible by num_heads " |
|
f"(got `hidden_size`: {config.hidden_size} and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.c_attn = Conv1D(3 * self.hidden_size, self.hidden_size) |
|
self.c_proj = Conv1D(self.hidden_size, self.hidden_size) |
|
|
|
self.attention_dropout = nn.Dropout(config.attention_dropout_prob) |
|
self.residual_dropout = nn.Dropout(config.residual_dropout_prob) |
|
|
|
def attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) |
|
attn_weights = attn_weights / math.sqrt(self.head_dim) |
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.Softmax(dim=-1)(attn_weights) |
|
attn_weights = self.attention_dropout(attn_weights) |
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
return attn_output, attn_weights |
|
|
|
def split_heads(self, tensor, num_heads, attn_head_size): |
|
""" |
|
Splits hidden_size dim into attn_head_size and num_heads |
|
""" |
|
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) |
|
tensor = tensor.view(*new_shape) |
|
return tensor.permute(0, 2, 1, 3) |
|
|
|
def merge_heads(self, tensor, num_heads, attn_head_size): |
|
""" |
|
Merges attn_head_size dim and num_attn_heads dim into hidden_size |
|
""" |
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) |
|
return tensor.view(new_shape) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=False, |
|
): |
|
query, key, value = self.c_attn(hidden_states).split(self.hidden_size, dim=2) |
|
query = self.split_heads(query, self.num_heads, self.head_dim) |
|
key = self.split_heads(key, self.num_heads, self.head_dim) |
|
value = self.split_heads(value, self.num_heads, self.head_dim) |
|
|
|
attn_output, attn_weights = self.attn(query, key, value, attention_mask, head_mask) |
|
|
|
attn_output = self.merge_heads(attn_output, self.num_heads, self.head_dim) |
|
attn_output = self.c_proj(attn_output) |
|
attn_output = self.residual_dropout(attn_output) |
|
|
|
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) |
|
return outputs |
|
|
|
|
|
class CodeSageMLP(nn.Module): |
|
def __init__(self, intermediate_size, config): |
|
super().__init__() |
|
|
|
self.c_fc = Conv1D(intermediate_size, config.hidden_size) |
|
self.act = ACT2FN[config.activation_function] |
|
self.c_proj = Conv1D(config.hidden_size, intermediate_size) |
|
self.dropout = nn.Dropout(config.residual_dropout_prob) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.c_fc(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.c_proj(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class CodeSageBlock(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size |
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.attn = CodeSageAttention(config) |
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.mlp = CodeSageMLP(inner_dim, config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=False, |
|
): |
|
residual = hidden_states |
|
hidden_states = self.ln_1(hidden_states) |
|
attn_outputs = self.attn( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions |
|
) |
|
attn_output = attn_outputs[0] |
|
outputs = attn_outputs[1:] |
|
hidden_states = attn_output + residual |
|
|
|
residual = hidden_states |
|
hidden_states = self.ln_2(hidden_states) |
|
feed_forward_hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + feed_forward_hidden_states |
|
|
|
outputs = (hidden_states,) + outputs[1:] |
|
return outputs |
|
|
|
|
|
class CodeSagePreTrainedModel(PreTrainedModel): |
|
config_class = CodeSageConfig |
|
base_model_prefix = "transformer" |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, (nn.Linear, Conv1D)): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class CodeSageModel(CodeSagePreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.wte = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
|
|
self.drop = nn.Dropout(config.embedding_dropout_prob) |
|
self.h = nn.ModuleList([CodeSageBlock(config) for _ in range(config.num_hidden_layers)]) |
|
self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings: torch.Tensor): |
|
self.wte = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None |
|
): |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
if position_ids is None: |
|
position_ids = torch.arange(input_shape[-1], dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
else: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
extended_attention_mask = None |
|
if attention_mask is not None: |
|
assert attention_mask.dim() == 2 |
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
position_embeds = self.wpe(position_ids) |
|
hidden_states = inputs_embeds + position_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
|
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, block in enumerate(self.h): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
outputs = block( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask[i], |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[1],) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
hidden_states = hidden_states.view(*output_shape) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
pooled_output = None |
|
if attention_mask is not None: |
|
pooled_output = (hidden_states * attention_mask[:, :, None]).sum(1) / attention_mask.sum(1)[:, None] |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, pooled_output, all_hidden_states, all_self_attentions] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=hidden_states, |
|
pooler_output=pooled_output, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions |
|
) |
|
|
|
|
|
class CodeSageForMaskedLM(CodeSagePreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = CodeSageModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=lm_logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
class CodeSageForSequenceClassification(CodeSagePreTrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.transformer = CodeSageModel(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout |
|
if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None |
|
else config.residual_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
assert attention_mask is not None, "attention_mask is needed to perform max-pooling" |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|