Update README.md
Browse files
README.md
CHANGED
@@ -1,38 +1,39 @@
|
|
1 |
-
|
2 |
-
license: other
|
3 |
-
license_name: flux-1-dev-non-commercial-license
|
4 |
-
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
|
5 |
-
language:
|
6 |
-
- en
|
7 |
-
tags:
|
8 |
-
- flux
|
9 |
-
- diffusers
|
10 |
-
- lora
|
11 |
-
base_model: "black-forest-labs/FLUX.1-dev"
|
12 |
-
pipeline_tag: text-to-image
|
13 |
-
instance_prompt: DHANUSH
|
14 |
-
---
|
15 |
-
|
16 |
-
#Flux
|
17 |
-
|
18 |
-
Trained on Replicate using:
|
19 |
-
|
20 |
-
https://replicate.com/ostris/flux-dev-lora-trainer/train
|
21 |
-
|
22 |
-
|
23 |
-
## Trigger words
|
24 |
-
You should use `TOK` to trigger the image generation.
|
25 |
-
|
26 |
-
|
27 |
-
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
|
28 |
-
|
29 |
-
```py
|
30 |
-
from diffusers import AutoPipelineForText2Image
|
31 |
import torch
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
4 |
+
from safetensors.torch import load_file
|
5 |
+
|
6 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
7 |
+
lora_path = "https://huggingface.co/codermert/model_malika/resolve/main/sarah-lora.safetensors"
|
8 |
+
|
9 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
10 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
11 |
+
pipe = pipe.to("cuda")
|
12 |
+
|
13 |
+
# LoRA dosyasını yükle
|
14 |
+
state_dict = load_file(lora_path)
|
15 |
+
pipe.unet.load_attn_procs(state_dict)
|
16 |
+
|
17 |
+
def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
|
18 |
+
image = pipe(
|
19 |
+
prompt=prompt,
|
20 |
+
negative_prompt=negative_prompt,
|
21 |
+
guidance_scale=guidance_scale,
|
22 |
+
num_inference_steps=num_inference_steps
|
23 |
+
).images[0]
|
24 |
+
return image
|
25 |
+
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=generate_image,
|
28 |
+
inputs=[
|
29 |
+
gr.Textbox(label="Prompt"),
|
30 |
+
gr.Textbox(label="Negative Prompt"),
|
31 |
+
gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7.5),
|
32 |
+
gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=50)
|
33 |
+
],
|
34 |
+
outputs=gr.Image(label="Generated Image"),
|
35 |
+
title="Stable Diffusion with LoRA",
|
36 |
+
description="Generate images using Stable Diffusion v1.5 with a custom LoRA model."
|
37 |
+
)
|
38 |
+
|
39 |
+
iface.launch()
|