codeofduty commited on
Commit
6537db2
·
verified ·
1 Parent(s): 2680c2c

Upload handler.py

Browse files
Files changed (1) hide show
  1. handler.py +43 -0
handler.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ import torch
3
+ import numpy as np
4
+ import torch.nn.functional as F
5
+
6
+ class EndpointHandler():
7
+ def __init__(self, path=""):
8
+ # load the optimized model
9
+ self.model = torch.load(path)
10
+
11
+
12
+
13
+
14
+ def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
15
+ """
16
+ Args:
17
+ data (:obj:):
18
+ includes the input data and the parameters for the inference.
19
+ Return:
20
+ A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
21
+ - "label": A string representing what the label/class is. There can be multiple labels.
22
+ - "score": A score between 0 and 1 describing how confident the model is for this label/class.
23
+ """
24
+ inputs = data.pop("inputs", data)
25
+ img = inputs["image"]
26
+
27
+ # Load the image
28
+ img = np.float32(img) / 255. # Load and normalize the image
29
+
30
+ # Convert to torch tensor and add batch dimension
31
+ img_tensor = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
32
+
33
+ # Padding if necessary (to make image dimensions multiples of 4)
34
+ b, c, h, w = img_tensor.shape
35
+ factor = 4 # Assuming factor is 4, based on the code context
36
+ H, W = ((h + factor) // factor) * factor, ((w + factor) // factor) * factor
37
+ padh = H - h if h % factor != 0 else 0
38
+ padw = W - w if w % factor != 0 else 0
39
+ img_tensor = F.pad(img_tensor, (0, padw, 0, padh), 'reflect')
40
+
41
+ restored = self.model(img_tensor)
42
+ # postprocess the prediction
43
+ return "OKAY"