|
from transformers import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class CodeFuseCGELargeConfig(PretrainedConfig): |
|
model_type = "qwen2" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=151936, |
|
hidden_size=4096, |
|
intermediate_size=22016, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=32, |
|
hidden_act="silu", |
|
max_position_embeddings=32768, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
use_sliding_window=False, |
|
sliding_window=4096, |
|
max_window_layers=28, |
|
attention_dropout=0.0, |
|
embedding_method="pma", |
|
inf_seq_length=1024, |
|
padding_side="right", |
|
compress_dim=1024, |
|
keep_max_layer=32, |
|
pma_num_heads=32, |
|
pma_ln=True, |
|
pma_norm=False, |
|
pma_norm_mode="post_normal", |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.use_sliding_window = use_sliding_window |
|
self.sliding_window = sliding_window if use_sliding_window else None |
|
self.max_window_layers = max_window_layers |
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
|
|
self.embedding_method = embedding_method |
|
self.inf_seq_length = inf_seq_length |
|
self.padding_side = padding_side |
|
self.compress_dim = compress_dim |
|
self.keep_max_layer = keep_max_layer |
|
self.pma_num_heads = pma_num_heads |
|
self.pma_ln = pma_ln |
|
self.pma_norm = pma_norm |
|
self.pma_norm_mode = pma_norm_mode |
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|