codechrl commited on
Commit
545f00b
·
verified ·
1 Parent(s): 577fc9b

Training update: 161,466/163,981 rows (98.47%) | +3 new @ 2025-11-11 21:20:21

Browse files
Files changed (4) hide show
  1. README.md +4 -4
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
  4. training_metadata.json +6 -6
README.md CHANGED
@@ -25,7 +25,7 @@ pipeline_tag: fill-mask
25
  - Model type: fine-tuned lightweight BERT variant
26
  - Languages: English & Indonesia
27
  - Finetuned from: `boltuix/bert-micro`
28
- - Status: **Early version** — trained on **98.46%** of planned data.
29
 
30
  **Model sources**
31
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
@@ -51,7 +51,7 @@ You can use this model to classify cybersecurity-related text — for example, w
51
  - Early classification of SIEM alert & events.
52
 
53
  ## 3. Bias, Risks, and Limitations
54
- Because the model is based on a small subset (98.46%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
55
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
56
  - **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
57
 
@@ -76,8 +76,8 @@ Since cybersecurity data often contains lengthy alert descriptions and execution
76
 
77
  ### Training Data
78
  - **Total database rows**: 163,981
79
- - **Rows processed (cumulative)**: 161,461 (98.46%)
80
- - **Training date**: 2025-11-11 20:49:43
81
 
82
  ### Post-Training Metrics
83
  - **Final training loss**:
 
25
  - Model type: fine-tuned lightweight BERT variant
26
  - Languages: English & Indonesia
27
  - Finetuned from: `boltuix/bert-micro`
28
+ - Status: **Early version** — trained on **98.47%** of planned data.
29
 
30
  **Model sources**
31
  - Base model: [boltuix/bert-micro](https://huggingface.co/boltuix/bert-micro)
 
51
  - Early classification of SIEM alert & events.
52
 
53
  ## 3. Bias, Risks, and Limitations
54
+ Because the model is based on a small subset (98.47%) of planned data, performance is preliminary and may degrade on unseen or specialized domains (industrial control, IoT logs, foreign language).
55
  - Inherits any biases present in the base model (`boltuix/bert-micro`) and in the fine-tuning data — e.g., over-representation of certain threat types, vendor or tooling-specific vocabulary.
56
  - **Should not be used as sole authority for incident decisions; only as an aid to human analysts.**
57
 
 
76
 
77
  ### Training Data
78
  - **Total database rows**: 163,981
79
+ - **Rows processed (cumulative)**: 161,466 (98.47%)
80
+ - **Training date**: 2025-11-11 21:20:21
81
 
82
  ### Post-Training Metrics
83
  - **Final training loss**:
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d50c5571755f967aaa8e368f7e48be83a615c1a7108cf466f27be9851c0162e2
3
  size 17671560
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5966f3f07663ddccba1fab5dbf7a7644f8a90eb3f7fca4e526a66741438f0ac8
3
  size 17671560
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:58b8ecd2389b2533a4c225a5d8314e11f05fefad10c840cb13fec7f29196f49f
3
  size 5905
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cef16c35115878aa5e3759080050f7633142168fdc2704bddd02883072e3d5c
3
  size 5905
training_metadata.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
- "trained_at": 1762894183.3307393,
3
- "trained_at_readable": "2025-11-11 20:49:43",
4
- "samples_this_session": 1654,
5
- "new_rows_this_session": 5,
6
- "trained_rows_total": 161461,
7
  "total_db_rows": 163981,
8
- "percentage": 98.4632365944835,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,
 
1
  {
2
+ "trained_at": 1762896021.6303897,
3
+ "trained_at_readable": "2025-11-11 21:20:21",
4
+ "samples_this_session": 1329,
5
+ "new_rows_this_session": 3,
6
+ "trained_rows_total": 161466,
7
  "total_db_rows": 163981,
8
+ "percentage": 98.4662857282246,
9
  "final_loss": 0,
10
  "epochs": 3,
11
  "learning_rate": 5e-05,