Upload pt_to_safetensors_converter.ipynb
Browse files
Text/pt_to_safetensors_converter.ipynb
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
},
|
15 |
+
"widgets": {
|
16 |
+
"application/vnd.jupyter.widget-state+json": {
|
17 |
+
"a44dd6024769456a8262a17b0ce6a2ed": {
|
18 |
+
"model_module": "@jupyter-widgets/controls",
|
19 |
+
"model_name": "ButtonModel",
|
20 |
+
"model_module_version": "1.5.0",
|
21 |
+
"state": {
|
22 |
+
"_dom_classes": [],
|
23 |
+
"_model_module": "@jupyter-widgets/controls",
|
24 |
+
"_model_module_version": "1.5.0",
|
25 |
+
"_model_name": "ButtonModel",
|
26 |
+
"_view_count": null,
|
27 |
+
"_view_module": "@jupyter-widgets/controls",
|
28 |
+
"_view_module_version": "1.5.0",
|
29 |
+
"_view_name": "ButtonView",
|
30 |
+
"button_style": "success",
|
31 |
+
"description": "✔ Done",
|
32 |
+
"disabled": true,
|
33 |
+
"icon": "",
|
34 |
+
"layout": "IPY_MODEL_49441085d85a4f219a6ccbf2a197f527",
|
35 |
+
"style": "IPY_MODEL_f084b7dfcae445a58d36a9c21971793c",
|
36 |
+
"tooltip": ""
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"49441085d85a4f219a6ccbf2a197f527": {
|
40 |
+
"model_module": "@jupyter-widgets/base",
|
41 |
+
"model_name": "LayoutModel",
|
42 |
+
"model_module_version": "1.2.0",
|
43 |
+
"state": {
|
44 |
+
"_model_module": "@jupyter-widgets/base",
|
45 |
+
"_model_module_version": "1.2.0",
|
46 |
+
"_model_name": "LayoutModel",
|
47 |
+
"_view_count": null,
|
48 |
+
"_view_module": "@jupyter-widgets/base",
|
49 |
+
"_view_module_version": "1.2.0",
|
50 |
+
"_view_name": "LayoutView",
|
51 |
+
"align_content": null,
|
52 |
+
"align_items": null,
|
53 |
+
"align_self": null,
|
54 |
+
"border": null,
|
55 |
+
"bottom": null,
|
56 |
+
"display": null,
|
57 |
+
"flex": null,
|
58 |
+
"flex_flow": null,
|
59 |
+
"grid_area": null,
|
60 |
+
"grid_auto_columns": null,
|
61 |
+
"grid_auto_flow": null,
|
62 |
+
"grid_auto_rows": null,
|
63 |
+
"grid_column": null,
|
64 |
+
"grid_gap": null,
|
65 |
+
"grid_row": null,
|
66 |
+
"grid_template_areas": null,
|
67 |
+
"grid_template_columns": null,
|
68 |
+
"grid_template_rows": null,
|
69 |
+
"height": null,
|
70 |
+
"justify_content": null,
|
71 |
+
"justify_items": null,
|
72 |
+
"left": null,
|
73 |
+
"margin": null,
|
74 |
+
"max_height": null,
|
75 |
+
"max_width": null,
|
76 |
+
"min_height": null,
|
77 |
+
"min_width": "50px",
|
78 |
+
"object_fit": null,
|
79 |
+
"object_position": null,
|
80 |
+
"order": null,
|
81 |
+
"overflow": null,
|
82 |
+
"overflow_x": null,
|
83 |
+
"overflow_y": null,
|
84 |
+
"padding": null,
|
85 |
+
"right": null,
|
86 |
+
"top": null,
|
87 |
+
"visibility": null,
|
88 |
+
"width": null
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"f084b7dfcae445a58d36a9c21971793c": {
|
92 |
+
"model_module": "@jupyter-widgets/controls",
|
93 |
+
"model_name": "ButtonStyleModel",
|
94 |
+
"model_module_version": "1.5.0",
|
95 |
+
"state": {
|
96 |
+
"_model_module": "@jupyter-widgets/controls",
|
97 |
+
"_model_module_version": "1.5.0",
|
98 |
+
"_model_name": "ButtonStyleModel",
|
99 |
+
"_view_count": null,
|
100 |
+
"_view_module": "@jupyter-widgets/base",
|
101 |
+
"_view_module_version": "1.2.0",
|
102 |
+
"_view_name": "StyleView",
|
103 |
+
"button_color": null,
|
104 |
+
"font_weight": ""
|
105 |
+
}
|
106 |
+
}
|
107 |
+
}
|
108 |
+
}
|
109 |
+
},
|
110 |
+
"cells": [
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"source": [
|
114 |
+
"#@title Mount Google Drive\n",
|
115 |
+
"from google.colab import drive\n",
|
116 |
+
"from IPython.display import clear_output\n",
|
117 |
+
"from IPython.display import display\n",
|
118 |
+
"import ipywidgets as widgets\n",
|
119 |
+
"import os\n",
|
120 |
+
"\n",
|
121 |
+
"def inf(msg, style, wdth): inf = widgets.Button(description=msg, disabled=True, button_style=style, layout=widgets.Layout(min_width=wdth));display(inf)\n",
|
122 |
+
"Shared_Drive = \"\" #@param {type:\"string\"}\n",
|
123 |
+
"#@markdown - If you're not using a shared drive, leave this empty\n",
|
124 |
+
"\n",
|
125 |
+
"print(\"\u001b[0;33mConnecting...\")\n",
|
126 |
+
"drive.mount('/content/gdrive')\n",
|
127 |
+
"\n",
|
128 |
+
"if Shared_Drive!=\"\" and os.path.exists(\"/content/gdrive/Shareddrives\"):\n",
|
129 |
+
" mainpth=\"Shareddrives/\"+Shared_Drive\n",
|
130 |
+
"else:\n",
|
131 |
+
" mainpth=\"MyDrive\"\n",
|
132 |
+
"\n",
|
133 |
+
"clear_output()\n",
|
134 |
+
"inf('\\u2714 Done','success', '50px')"
|
135 |
+
],
|
136 |
+
"metadata": {
|
137 |
+
"id": "fCR2boKCTx0z",
|
138 |
+
"cellView": "form",
|
139 |
+
"outputId": "baf6303f-9850-4dd2-a6d3-86871ac8aef5",
|
140 |
+
"colab": {
|
141 |
+
"base_uri": "https://localhost:8080/",
|
142 |
+
"height": 49,
|
143 |
+
"referenced_widgets": [
|
144 |
+
"a44dd6024769456a8262a17b0ce6a2ed",
|
145 |
+
"49441085d85a4f219a6ccbf2a197f527",
|
146 |
+
"f084b7dfcae445a58d36a9c21971793c"
|
147 |
+
]
|
148 |
+
}
|
149 |
+
},
|
150 |
+
"execution_count": null,
|
151 |
+
"outputs": [
|
152 |
+
{
|
153 |
+
"output_type": "display_data",
|
154 |
+
"data": {
|
155 |
+
"text/plain": [
|
156 |
+
"Button(button_style='success', description='✔ Done', disabled=True, layout=Layout(min_width='50px'), style=But…"
|
157 |
+
],
|
158 |
+
"application/vnd.jupyter.widget-view+json": {
|
159 |
+
"version_major": 2,
|
160 |
+
"version_minor": 0,
|
161 |
+
"model_id": "a44dd6024769456a8262a17b0ce6a2ed"
|
162 |
+
}
|
163 |
+
},
|
164 |
+
"metadata": {}
|
165 |
+
}
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"source": [
|
171 |
+
"#@title Install Required Dependencies\n",
|
172 |
+
"!pip install torch\n",
|
173 |
+
"!pip install safetensors\n",
|
174 |
+
"!pip install pytorch-lightning"
|
175 |
+
],
|
176 |
+
"metadata": {
|
177 |
+
"id": "5S88gkUJzeqG"
|
178 |
+
},
|
179 |
+
"execution_count": null,
|
180 |
+
"outputs": []
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "code",
|
184 |
+
"source": [
|
185 |
+
"def inf(msg, style, wdth): inf = widgets.Button(description=msg, disabled=True, button_style=style, layout=widgets.Layout(min_width=wdth));display(inf)\n",
|
186 |
+
"file_path = \"\" #@param {type:\"string\"}\n",
|
187 |
+
"#@markdown - Copy and paste the path to an embedding or VAE file that you are converting, or a directory containing several files\n",
|
188 |
+
"#@markdown - For example: /content/gdrive/MyDrive/myembedding.pt or /content/gdrive/MyDrive/my_directory\n",
|
189 |
+
"#@markdown - Pickle files must be in .pt format\n",
|
190 |
+
"verbose=True"
|
191 |
+
],
|
192 |
+
"metadata": {
|
193 |
+
"id": "7aLFC6c4O5EW"
|
194 |
+
},
|
195 |
+
"execution_count": null,
|
196 |
+
"outputs": []
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"source": [
|
201 |
+
"#@title Define Converter Functions\n",
|
202 |
+
"import os\n",
|
203 |
+
"from typing import Any, Dict\n",
|
204 |
+
"\n",
|
205 |
+
"import torch\n",
|
206 |
+
"from safetensors.torch import save_file\n",
|
207 |
+
"\n",
|
208 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
209 |
+
"\n",
|
210 |
+
"def process_pt_files(path: str, model_type: str, verbose=True) -> None:\n",
|
211 |
+
" if os.path.isdir(path):\n",
|
212 |
+
" # Path is a directory, process all .pt files in the directory\n",
|
213 |
+
" for file_name in os.listdir(path):\n",
|
214 |
+
" if file_name.endswith('.pt'):\n",
|
215 |
+
" process_file(os.path.join(path, file_name), model_type, verbose)\n",
|
216 |
+
" elif os.path.isfile(path) and path.endswith('.pt'):\n",
|
217 |
+
" # Path is a .pt file, process this file\n",
|
218 |
+
" process_file(path, model_type, verbose)\n",
|
219 |
+
" else:\n",
|
220 |
+
" print(f\"{path} is not a valid directory or .pt file.\")\n",
|
221 |
+
"\n",
|
222 |
+
"def process_file(file_path: str, model_type: str, verbose: bool) -> None:\n",
|
223 |
+
" # Load the PyTorch model\n",
|
224 |
+
" model = torch.load(file_path, map_location=device)\n",
|
225 |
+
"\n",
|
226 |
+
" if verbose:\n",
|
227 |
+
" print(file_path)\n",
|
228 |
+
"\n",
|
229 |
+
" if model_type == 'embedding':\n",
|
230 |
+
" s_model = process_embedding_file(model, verbose)\n",
|
231 |
+
" elif model_type == 'vae':\n",
|
232 |
+
" s_model = process_vae_file(model, verbose)\n",
|
233 |
+
" else:\n",
|
234 |
+
" raise Exception(f\"model_type `{model_type}` is not supported!\")\n",
|
235 |
+
"\n",
|
236 |
+
" # Save the model with the new extension\n",
|
237 |
+
" if file_path.endswith('.pt'):\n",
|
238 |
+
" new_file_path = file_path[:-3] + '.safetensors'\n",
|
239 |
+
" else:\n",
|
240 |
+
" new_file_path = file_path + '.safetensors'\n",
|
241 |
+
" save_file(s_model, new_file_path)\n",
|
242 |
+
"\n",
|
243 |
+
"def process_embedding_file(model: Dict[str, Any], verbose: bool) -> Dict[str, torch.Tensor]:\n",
|
244 |
+
" # Extract the embedding tensors\n",
|
245 |
+
" model_tensors = model.get('string_to_param').get('*')\n",
|
246 |
+
" s_model = {\n",
|
247 |
+
" 'emb_params': model_tensors\n",
|
248 |
+
" }\n",
|
249 |
+
"\n",
|
250 |
+
" if verbose:\n",
|
251 |
+
" # Print the requested training information, if it exists\n",
|
252 |
+
" if ('sd_checkpoint_name' in model) and (model['sd_checkpoint_name'] is not None):\n",
|
253 |
+
" print(f\"Trained on {model['sd_checkpoint_name']}.\")\n",
|
254 |
+
" else:\n",
|
255 |
+
" print(\"Checkpoint name not found in the model.\")\n",
|
256 |
+
"\n",
|
257 |
+
" if ('step' in model) and (model['step'] is not None):\n",
|
258 |
+
" print(f\"Trained for {model['step']} steps.\")\n",
|
259 |
+
" else:\n",
|
260 |
+
" print(\"Step not found in the model.\")\n",
|
261 |
+
" # Display the tensor's shape\n",
|
262 |
+
" print(f\"Dimensions of embedding tensor: {model_tensors.shape}\")\n",
|
263 |
+
" print()\n",
|
264 |
+
"\n",
|
265 |
+
" return s_model\n",
|
266 |
+
"\n",
|
267 |
+
"def process_vae_file(model: Dict[str, Any], verbose: bool) -> Dict[str, torch.Tensor]:\n",
|
268 |
+
" # Extract the state dictionary\n",
|
269 |
+
" s_model = model[\"state_dict\"]\n",
|
270 |
+
" if verbose:\n",
|
271 |
+
" # Print the requested training information, if it exists\n",
|
272 |
+
" step = model.get('step', model.get('global_step'))\n",
|
273 |
+
" if step is not None:\n",
|
274 |
+
" print(f\"Trained for {step} steps.\")\n",
|
275 |
+
" else:\n",
|
276 |
+
" print(\"Step not found in the model.\")\n",
|
277 |
+
" print()\n",
|
278 |
+
" return s_model"
|
279 |
+
],
|
280 |
+
"metadata": {
|
281 |
+
"id": "UwH1lXmGw9XP"
|
282 |
+
},
|
283 |
+
"execution_count": null,
|
284 |
+
"outputs": []
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "markdown",
|
288 |
+
"source": [
|
289 |
+
"## Convert the file(s)\n",
|
290 |
+
"\n",
|
291 |
+
"Run whichever of the two following code blocks corresponds to the type of file you are converting.\n",
|
292 |
+
"\n",
|
293 |
+
"The converted Safetensor file will be saved in the same directory as the original."
|
294 |
+
],
|
295 |
+
"metadata": {
|
296 |
+
"id": "LqEl4sM0sMPG"
|
297 |
+
}
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"cell_type": "code",
|
301 |
+
"source": [
|
302 |
+
"#@title Convert the Embedding(s)\n",
|
303 |
+
"process_pt_files(file_path, 'embedding', verbose=verbose)"
|
304 |
+
],
|
305 |
+
"metadata": {
|
306 |
+
"id": "4LEWGfjiUeG1",
|
307 |
+
"cellView": "form"
|
308 |
+
},
|
309 |
+
"execution_count": null,
|
310 |
+
"outputs": []
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"cell_type": "code",
|
314 |
+
"source": [
|
315 |
+
"#@title Convert the VAE(s)\n",
|
316 |
+
"process_pt_files(file_path, 'vae', verbose=verbose)"
|
317 |
+
],
|
318 |
+
"metadata": {
|
319 |
+
"id": "Jil7A1ckyiHA",
|
320 |
+
"cellView": "form"
|
321 |
+
},
|
322 |
+
"execution_count": null,
|
323 |
+
"outputs": []
|
324 |
+
}
|
325 |
+
]
|
326 |
+
}
|