Visual Question Answering
PEFT
Safetensors
French
English
Cyrile commited on
Commit
abe3734
·
verified ·
1 Parent(s): 5d6efd1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -8
README.md CHANGED
@@ -12,9 +12,14 @@ pipeline_tag: visual-question-answering
12
 
13
  ## Model Description
14
 
15
- **paligemma-3b-table-vqa-lora** is a fine-tuned version of the **[google/paligemma-3b-ft-docvqa-896](https://huggingface.co/google/paligemma-3b-ft-docvqa-896)** model, trained specifically on the **[table-vqa](https://huggingface.co/datasets/cmarkea/table-vqa)** dataset published by Crédit Mutuel Arkéa. This model leverages the **LoRA** (Low-Rank Adaptation) technique, which significantly reduces the computational complexity of fine-tuning while maintaining high performance. The model operates in bfloat16 precision for efficiency, making it an ideal solution for resource-constrained environments.
 
 
 
16
 
17
- This model is designed for multilingual environments (French and English) and excels in table-based visual question-answering (VQA) tasks. It is highly suitable for extracting information from tables in documents, making it a strong candidate for applications in financial reporting, data analysis, or administrative document processing. The model was fine-tuned over a span of 7 days using a single A100 40GB GPU.
 
 
18
 
19
  ## Key Features
20
 
@@ -27,7 +32,9 @@ This model is designed for multilingual environments (French and English) and ex
27
 
28
  ## Model Architecture
29
 
30
- This model was built on top of **[google/paligemma-3b-ft-docvqa-896](https://huggingface.co/google/paligemma-3b-ft-docvqa-896)**, using its pre-trained multi-modal capabilities to process both text and images (e.g., document tables). LoRA was applied to reduce the size and complexity of fine-tuning while preserving accuracy, allowing the model to excel in specific tasks such as table understanding and VQA.
 
 
31
 
32
  ## Usage
33
 
@@ -40,7 +47,7 @@ import requests
40
  import torch
41
  device = "cuda" if torch.cuda.is_available() else "cpu"
42
 
43
- model_id = "cmarkea/paligemma-table-vqa-lora"
44
 
45
  # Sample image for inference
46
  url = "https://datasets-server.huggingface.co/cached-assets/cmarkea/table-vqa/--/c26968da3346f92ab6bfc5fec85592f8250e23f5/--/default/train/22/image/image.jpg?Expires=1728915081&Signature=Zkrd9ZWt5b9XtY0UFrgfrTuqo58DHWIJ00ZwXAymmL-mrwqnWWmiwUPelYOOjPZZdlP7gAvt96M1PKeg9a2TFm7hDrnnRAEO~W89li~AKU2apA81M6AZgwMCxc2A0xBe6rnCPQumiCGD7IsFnFVwcxkgMQXyNEL7bEem6cT0Cief9DkURUDCC-kheQY1hhkiqLLUt3ITs6o2KwPdW97EAQ0~VBK1cERgABKXnzPfAImnvjw7L-5ZXCcMJLrvuxwgOQ~DYPs456ZVxQLbTxuDwlxvNbpSKoqoAQv0CskuQwTFCq2b5MOkCCp9zoqYJxhUhJ-aI3lhyIAjmnsL4bhe6A__&Key-Pair-Id=K3EI6M078Z3AC3"
@@ -71,15 +78,18 @@ with torch.inference_mode():
71
 
72
  ## Performance
73
 
74
- The model's performance was evaluated on 200 question-answer pairs, extracted from 100 tables from the test set of the **[table-vqa](https://huggingface.co/datasets/cmarkea/table-vqa)** dataset. For each table, two pairs were selected: one in French and the other in English.
 
75
 
76
- To evaluate the model’s responses, the **[LLM-as-Juries](https://arxiv.org/abs/2404.18796)** framework was employed using three judge models (GPT-4o, Gemini1.5 Pro, and Claude 3.5-Sonnet). The evaluation was based on a scale from 0 to 5, tailored to the VQA context, ensuring accurate judgment of the model’s performance.
 
77
 
78
  Here’s a visualization of the results:
79
 
80
  ![constellation](https://i.postimg.cc/y6tkYg9F/constellation-03.png)
81
 
82
- In comparison, this model outperforms **[HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3)** in terms of accuracy and efficiency, despite having a smaller parameter size.
 
83
 
84
 
85
  ## Citation
@@ -87,7 +97,7 @@ In comparison, this model outperforms **[HuggingFaceM4/Idefics3-8B-Llama3](https
87
  ```bibtex
88
  @online{AgDePaligemmaTabVQA,
89
  AUTHOR = {Tom Agonnoude, Cyrile Delestre},
90
- URL = {https://huggingface.co/cmarkea/paligemma-table-vqa-lora},
91
  YEAR = {2024},
92
  KEYWORDS = {Multimodal, VQA, Table Understanding, LoRA},
93
  }
 
12
 
13
  ## Model Description
14
 
15
+ **paligemma-3b-tablevqa-896-lora** is a fine-tuned version of the **[google/paligemma-3b-ft-docvqa-896](https://huggingface.co/google/paligemma-3b-ft-docvqa-896)** model,
16
+ trained specifically on the **[table-vqa](https://huggingface.co/datasets/cmarkea/table-vqa)** dataset published by Crédit Mutuel Arkéa. This model leverages the
17
+ **LoRA** (Low-Rank Adaptation) technique, which significantly reduces the computational complexity of fine-tuning while maintaining high performance. The model operates
18
+ in bfloat16 precision for efficiency, making it an ideal solution for resource-constrained environments.
19
 
20
+ This model is designed for multilingual environments (French and English) and excels in table-based visual question-answering (VQA) tasks. It is highly suitable for
21
+ extracting information from tables in documents, making it a strong candidate for applications in financial reporting, data analysis, or administrative document processing.
22
+ The model was fine-tuned over a span of 7 days using a single A100 40GB GPU.
23
 
24
  ## Key Features
25
 
 
32
 
33
  ## Model Architecture
34
 
35
+ This model was built on top of **[google/paligemma-3b-ft-docvqa-896](https://huggingface.co/google/paligemma-3b-ft-docvqa-896)**, using its pre-trained multi-modal
36
+ capabilities to process both text and images (e.g., document tables). LoRA was applied to reduce the size and complexity of fine-tuning while preserving accuracy,
37
+ allowing the model to excel in specific tasks such as table understanding and VQA.
38
 
39
  ## Usage
40
 
 
47
  import torch
48
  device = "cuda" if torch.cuda.is_available() else "cpu"
49
 
50
+ model_id = "cmarkea/paligemma-tablevqa-896-lora"
51
 
52
  # Sample image for inference
53
  url = "https://datasets-server.huggingface.co/cached-assets/cmarkea/table-vqa/--/c26968da3346f92ab6bfc5fec85592f8250e23f5/--/default/train/22/image/image.jpg?Expires=1728915081&Signature=Zkrd9ZWt5b9XtY0UFrgfrTuqo58DHWIJ00ZwXAymmL-mrwqnWWmiwUPelYOOjPZZdlP7gAvt96M1PKeg9a2TFm7hDrnnRAEO~W89li~AKU2apA81M6AZgwMCxc2A0xBe6rnCPQumiCGD7IsFnFVwcxkgMQXyNEL7bEem6cT0Cief9DkURUDCC-kheQY1hhkiqLLUt3ITs6o2KwPdW97EAQ0~VBK1cERgABKXnzPfAImnvjw7L-5ZXCcMJLrvuxwgOQ~DYPs456ZVxQLbTxuDwlxvNbpSKoqoAQv0CskuQwTFCq2b5MOkCCp9zoqYJxhUhJ-aI3lhyIAjmnsL4bhe6A__&Key-Pair-Id=K3EI6M078Z3AC3"
 
78
 
79
  ## Performance
80
 
81
+ The model's performance was evaluated on 200 question-answer pairs, extracted from 100 tables from the test set of the
82
+ **[table-vqa](https://huggingface.co/datasets/cmarkea/table-vqa)** dataset. For each table, two pairs were selected: one in French and the other in English.
83
 
84
+ To evaluate the model’s responses, the **[LLM-as-Juries](https://arxiv.org/abs/2404.18796)** framework was employed using three judge models (GPT-4o, Gemini1.5 Pro,
85
+ and Claude 3.5-Sonnet). The evaluation was based on a scale from 0 to 5, tailored to the VQA context, ensuring accurate judgment of the model’s performance.
86
 
87
  Here’s a visualization of the results:
88
 
89
  ![constellation](https://i.postimg.cc/y6tkYg9F/constellation-03.png)
90
 
91
+ In comparison, this model outperforms **[HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3)** in terms of accuracy and efficiency,
92
+ despite having a smaller parameter size.
93
 
94
 
95
  ## Citation
 
97
  ```bibtex
98
  @online{AgDePaligemmaTabVQA,
99
  AUTHOR = {Tom Agonnoude, Cyrile Delestre},
100
+ URL = {https://huggingface.co/cmarkea/paligemma-tablevqa-896-lora},
101
  YEAR = {2024},
102
  KEYWORDS = {Multimodal, VQA, Table Understanding, LoRA},
103
  }