cloudwalkerw commited on
Commit
1bad8e0
1 Parent(s): 38b7a7e

Model save

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/wavlm-base
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - superb
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: wav2vec2-base-ft-keyword-spotting
11
+ results:
12
+ - task:
13
+ name: Audio Classification
14
+ type: audio-classification
15
+ dataset:
16
+ name: superb
17
+ type: superb
18
+ config: ks
19
+ split: validation
20
+ args: ks
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9694027655192704
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # wav2vec2-base-ft-keyword-spotting
31
+
32
+ This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the superb dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2270
35
+ - Accuracy: 0.9694
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 3e-05
55
+ - train_batch_size: 64
56
+ - eval_batch_size: 64
57
+ - seed: 0
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 256
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 5.0
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.3203 | 1.0 | 199 | 1.2906 | 0.6328 |
70
+ | 0.9587 | 2.0 | 399 | 0.7793 | 0.7355 |
71
+ | 0.6218 | 3.0 | 599 | 0.3858 | 0.9289 |
72
+ | 0.4379 | 4.0 | 799 | 0.2581 | 0.9688 |
73
+ | 0.3779 | 4.98 | 995 | 0.2270 | 0.9694 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.34.0.dev0
79
+ - Pytorch 2.0.0.post302
80
+ - Datasets 2.14.5
81
+ - Tokenizers 0.13.3