|
from copy import copy |
|
from functools import partial |
|
|
|
from .auto import tqdm as tqdm_auto |
|
|
|
try: |
|
import keras |
|
except (ImportError, AttributeError) as e: |
|
try: |
|
from tensorflow import keras |
|
except ImportError: |
|
raise e |
|
__author__ = {"github.com/": ["casperdcl"]} |
|
__all__ = ['TqdmCallback'] |
|
|
|
|
|
class TqdmCallback(keras.callbacks.Callback): |
|
"""Keras callback for epoch and batch progress.""" |
|
@staticmethod |
|
def bar2callback(bar, pop=None, delta=(lambda logs: 1)): |
|
def callback(_, logs=None): |
|
n = delta(logs) |
|
if logs: |
|
if pop: |
|
logs = copy(logs) |
|
[logs.pop(i, 0) for i in pop] |
|
bar.set_postfix(logs, refresh=False) |
|
bar.update(n) |
|
|
|
return callback |
|
|
|
def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1, |
|
tqdm_class=tqdm_auto, **tqdm_kwargs): |
|
""" |
|
Parameters |
|
---------- |
|
epochs : int, optional |
|
data_size : int, optional |
|
Number of training pairs. |
|
batch_size : int, optional |
|
Number of training pairs per batch. |
|
verbose : int |
|
0: epoch, 1: batch (transient), 2: batch. [default: 1]. |
|
Will be set to `0` unless both `data_size` and `batch_size` |
|
are given. |
|
tqdm_class : optional |
|
`tqdm` class to use for bars [default: `tqdm.auto.tqdm`]. |
|
tqdm_kwargs : optional |
|
Any other arguments used for all bars. |
|
""" |
|
if tqdm_kwargs: |
|
tqdm_class = partial(tqdm_class, **tqdm_kwargs) |
|
self.tqdm_class = tqdm_class |
|
self.epoch_bar = tqdm_class(total=epochs, unit='epoch') |
|
self.on_epoch_end = self.bar2callback(self.epoch_bar) |
|
if data_size and batch_size: |
|
self.batches = batches = (data_size + batch_size - 1) // batch_size |
|
else: |
|
self.batches = batches = None |
|
self.verbose = verbose |
|
if verbose == 1: |
|
self.batch_bar = tqdm_class(total=batches, unit='batch', leave=False) |
|
self.on_batch_end = self.bar2callback( |
|
self.batch_bar, pop=['batch', 'size'], |
|
delta=lambda logs: logs.get('size', 1)) |
|
|
|
def on_train_begin(self, *_, **__): |
|
params = self.params.get |
|
auto_total = params('epochs', params('nb_epoch', None)) |
|
if auto_total is not None and auto_total != self.epoch_bar.total: |
|
self.epoch_bar.reset(total=auto_total) |
|
|
|
def on_epoch_begin(self, epoch, *_, **__): |
|
if self.epoch_bar.n < epoch: |
|
ebar = self.epoch_bar |
|
ebar.n = ebar.last_print_n = ebar.initial = epoch |
|
if self.verbose: |
|
params = self.params.get |
|
total = params('samples', params( |
|
'nb_sample', params('steps', None))) or self.batches |
|
if self.verbose == 2: |
|
if hasattr(self, 'batch_bar'): |
|
self.batch_bar.close() |
|
self.batch_bar = self.tqdm_class( |
|
total=total, unit='batch', leave=True, |
|
unit_scale=1 / (params('batch_size', 1) or 1)) |
|
self.on_batch_end = self.bar2callback( |
|
self.batch_bar, pop=['batch', 'size'], |
|
delta=lambda logs: logs.get('size', 1)) |
|
elif self.verbose == 1: |
|
self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1) |
|
self.batch_bar.reset(total=total) |
|
else: |
|
raise KeyError('Unknown verbosity') |
|
|
|
def on_train_end(self, *_, **__): |
|
if self.verbose: |
|
self.batch_bar.close() |
|
self.epoch_bar.close() |
|
|
|
def display(self): |
|
"""Displays in the current cell in Notebooks.""" |
|
container = getattr(self.epoch_bar, 'container', None) |
|
if container is None: |
|
return |
|
from .notebook import display |
|
display(container) |
|
batch_bar = getattr(self, 'batch_bar', None) |
|
if batch_bar is not None: |
|
display(batch_bar.container) |
|
|
|
@staticmethod |
|
def _implements_train_batch_hooks(): |
|
return True |
|
|
|
@staticmethod |
|
def _implements_test_batch_hooks(): |
|
return True |
|
|
|
@staticmethod |
|
def _implements_predict_batch_hooks(): |
|
return True |
|
|