clincolnoz
commited on
Commit
•
4fb0ffe
1
Parent(s):
71f9e69
full precision weights
Browse files- README.md +41 -42
- all_results.json +15 -15
- eval_results.json +11 -11
- predict_results_None.txt +99 -99
- pytorch_model.bin +1 -1
- train_results.json +4 -4
- trainer_state.json +54 -45
- training_args.bin +2 -2
README.md
CHANGED
@@ -6,32 +6,32 @@ metrics:
|
|
6 |
- f1
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
-
- name: final-lr2e-5-bs16
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
-
# final-lr2e-5-bs16
|
17 |
|
18 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- F1 Macro: 0.
|
22 |
-
- F1 Weighted: 0.
|
23 |
-
- F1: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Confusion Matrix: [[
|
26 |
-
[
|
27 |
-
- Confusion Matrix Norm: [[0.
|
28 |
-
[0.
|
29 |
-
- Classification Report: precision recall f1-score
|
30 |
-
0 0.
|
31 |
-
1 0.
|
32 |
-
accuracy 0.
|
33 |
-
macro avg 0.
|
34 |
-
weighted avg 0.
|
35 |
|
36 |
## Model description
|
37 |
|
@@ -57,36 +57,35 @@ The following hyperparameters were used during training:
|
|
57 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
- lr_scheduler_type: linear
|
59 |
- num_epochs: 3.0
|
60 |
-
- mixed_precision_training: Native AMP
|
61 |
|
62 |
### Training results
|
63 |
|
64 |
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1 | Accuracy | Confusion Matrix | Confusion Matrix Norm | Classification Report |
|
65 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------:|:--------:|:--------------------------:|:--------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
66 |
-
| 0.
|
67 |
-
[
|
68 |
-
[0.
|
69 |
-
0 0.
|
70 |
-
1 0.
|
71 |
-
accuracy 0.
|
72 |
-
macro avg 0.
|
73 |
-
weighted avg 0.
|
74 |
-
| 0.
|
75 |
-
[
|
76 |
-
[0.
|
77 |
-
0 0.
|
78 |
-
1 0.
|
79 |
-
accuracy 0.
|
80 |
-
macro avg 0.
|
81 |
-
weighted avg 0.
|
82 |
-
| 0.
|
83 |
-
[
|
84 |
-
[0.
|
85 |
-
0 0.
|
86 |
-
1 0.
|
87 |
-
accuracy 0.
|
88 |
-
macro avg 0.
|
89 |
-
weighted avg 0.
|
90 |
|
91 |
|
92 |
### Framework versions
|
|
|
6 |
- f1
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
+
- name: final-lr2e-5-bs16-fullprecision
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
+
# final-lr2e-5-bs16-fullprecision
|
17 |
|
18 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4633
|
21 |
+
- F1 Macro: 0.8276
|
22 |
+
- F1 Weighted: 0.8754
|
23 |
+
- F1: 0.7348
|
24 |
+
- Accuracy: 0.8775
|
25 |
+
- Confusion Matrix: [[2831 199]
|
26 |
+
[ 291 679]]
|
27 |
+
- Confusion Matrix Norm: [[0.93432343 0.06567657]
|
28 |
+
[0.3 0.7 ]]
|
29 |
+
- Classification Report: precision recall f1-score support
|
30 |
+
0 0.906791 0.934323 0.920351 3030.0000
|
31 |
+
1 0.773349 0.700000 0.734848 970.0000
|
32 |
+
accuracy 0.877500 0.877500 0.877500 0.8775
|
33 |
+
macro avg 0.840070 0.817162 0.827600 4000.0000
|
34 |
+
weighted avg 0.874431 0.877500 0.875367 4000.0000
|
35 |
|
36 |
## Model description
|
37 |
|
|
|
57 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
- lr_scheduler_type: linear
|
59 |
- num_epochs: 3.0
|
|
|
60 |
|
61 |
### Training results
|
62 |
|
63 |
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1 | Accuracy | Confusion Matrix | Confusion Matrix Norm | Classification Report |
|
64 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------:|:--------:|:--------------------------:|:--------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
65 |
+
| 0.3362 | 1.0 | 1000 | 0.3034 | 0.8182 | 0.8693 | 0.7191 | 0.8722 | [[2835 195]
|
66 |
+
[ 316 654]] | [[0.93564356 0.06435644]
|
67 |
+
[0.3257732 0.6742268 ]] | precision recall f1-score support
|
68 |
+
0 0.899714 0.935644 0.917327 3030.00000
|
69 |
+
1 0.770318 0.674227 0.719076 970.00000
|
70 |
+
accuracy 0.872250 0.872250 0.872250 0.87225
|
71 |
+
macro avg 0.835016 0.804935 0.818202 4000.00000
|
72 |
+
weighted avg 0.868336 0.872250 0.869251 4000.00000 |
|
73 |
+
| 0.2352 | 2.0 | 2000 | 0.3730 | 0.8270 | 0.8730 | 0.7374 | 0.8732 | [[2781 249]
|
74 |
+
[ 258 712]] | [[0.91782178 0.08217822]
|
75 |
+
[0.26597938 0.73402062]] | precision recall f1-score support
|
76 |
+
0 0.915104 0.917822 0.916461 3030.00000
|
77 |
+
1 0.740895 0.734021 0.737442 970.00000
|
78 |
+
accuracy 0.873250 0.873250 0.873250 0.87325
|
79 |
+
macro avg 0.827999 0.825921 0.826951 4000.00000
|
80 |
+
weighted avg 0.872858 0.873250 0.873049 4000.00000 |
|
81 |
+
| 0.1566 | 3.0 | 3000 | 0.4633 | 0.8276 | 0.8754 | 0.7348 | 0.8775 | [[2831 199]
|
82 |
+
[ 291 679]] | [[0.93432343 0.06567657]
|
83 |
+
[0.3 0.7 ]] | precision recall f1-score support
|
84 |
+
0 0.906791 0.934323 0.920351 3030.0000
|
85 |
+
1 0.773349 0.700000 0.734848 970.0000
|
86 |
+
accuracy 0.877500 0.877500 0.877500 0.8775
|
87 |
+
macro avg 0.840070 0.817162 0.827600 4000.0000
|
88 |
+
weighted avg 0.874431 0.877500 0.875367 4000.0000 |
|
89 |
|
90 |
|
91 |
### Framework versions
|
all_results.json
CHANGED
@@ -1,20 +1,20 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_classification_report": " precision recall f1-score
|
5 |
-
"eval_confusion_matrix": "[[
|
6 |
-
"eval_confusion_matrix_norm": "[[0.
|
7 |
-
"eval_f1": 0.
|
8 |
-
"eval_f1_macro": 0.
|
9 |
-
"eval_f1_weighted": 0.
|
10 |
-
"eval_loss": 0.
|
11 |
-
"eval_runtime":
|
12 |
"eval_samples": 4000,
|
13 |
-
"eval_samples_per_second":
|
14 |
-
"eval_steps_per_second":
|
15 |
-
"train_loss": 0.
|
16 |
-
"train_runtime":
|
17 |
"train_samples": 16000,
|
18 |
-
"train_samples_per_second":
|
19 |
-
"train_steps_per_second":
|
20 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8775,
|
4 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.906791 0.934323 0.920351 3030.0000\n1 0.773349 0.700000 0.734848 970.0000\naccuracy 0.877500 0.877500 0.877500 0.8775\nmacro avg 0.840070 0.817162 0.827600 4000.0000\nweighted avg 0.874431 0.877500 0.875367 4000.0000",
|
5 |
+
"eval_confusion_matrix": "[[2831 199]\n [ 291 679]]",
|
6 |
+
"eval_confusion_matrix_norm": "[[0.93432343 0.06567657]\n [0.3 0.7 ]]",
|
7 |
+
"eval_f1": 0.7348484848484848,
|
8 |
+
"eval_f1_macro": 0.8275997950900422,
|
9 |
+
"eval_f1_weighted": 0.8753667198644444,
|
10 |
+
"eval_loss": 0.4632544219493866,
|
11 |
+
"eval_runtime": 16.6824,
|
12 |
"eval_samples": 4000,
|
13 |
+
"eval_samples_per_second": 239.773,
|
14 |
+
"eval_steps_per_second": 14.986,
|
15 |
+
"train_loss": 0.2591003138224284,
|
16 |
+
"train_runtime": 651.1299,
|
17 |
"train_samples": 16000,
|
18 |
+
"train_samples_per_second": 73.718,
|
19 |
+
"train_steps_per_second": 4.607
|
20 |
}
|
eval_results.json
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_classification_report": " precision recall f1-score
|
5 |
-
"eval_confusion_matrix": "[[
|
6 |
-
"eval_confusion_matrix_norm": "[[0.
|
7 |
-
"eval_f1": 0.
|
8 |
-
"eval_f1_macro": 0.
|
9 |
-
"eval_f1_weighted": 0.
|
10 |
-
"eval_loss": 0.
|
11 |
-
"eval_runtime":
|
12 |
"eval_samples": 4000,
|
13 |
-
"eval_samples_per_second":
|
14 |
-
"eval_steps_per_second":
|
15 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8775,
|
4 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.906791 0.934323 0.920351 3030.0000\n1 0.773349 0.700000 0.734848 970.0000\naccuracy 0.877500 0.877500 0.877500 0.8775\nmacro avg 0.840070 0.817162 0.827600 4000.0000\nweighted avg 0.874431 0.877500 0.875367 4000.0000",
|
5 |
+
"eval_confusion_matrix": "[[2831 199]\n [ 291 679]]",
|
6 |
+
"eval_confusion_matrix_norm": "[[0.93432343 0.06567657]\n [0.3 0.7 ]]",
|
7 |
+
"eval_f1": 0.7348484848484848,
|
8 |
+
"eval_f1_macro": 0.8275997950900422,
|
9 |
+
"eval_f1_weighted": 0.8753667198644444,
|
10 |
+
"eval_loss": 0.4632544219493866,
|
11 |
+
"eval_runtime": 16.6824,
|
12 |
"eval_samples": 4000,
|
13 |
+
"eval_samples_per_second": 239.773,
|
14 |
+
"eval_steps_per_second": 14.986
|
15 |
}
|
predict_results_None.txt
CHANGED
@@ -33,8 +33,8 @@ index prediction
|
|
33 |
31 not sexist
|
34 |
32 not sexist
|
35 |
33 not sexist
|
36 |
-
34
|
37 |
-
35
|
38 |
36 not sexist
|
39 |
37 not sexist
|
40 |
38 not sexist
|
@@ -54,7 +54,7 @@ index prediction
|
|
54 |
52 not sexist
|
55 |
53 not sexist
|
56 |
54 not sexist
|
57 |
-
55 sexist
|
58 |
56 not sexist
|
59 |
57 not sexist
|
60 |
58 not sexist
|
@@ -85,7 +85,7 @@ index prediction
|
|
85 |
83 not sexist
|
86 |
84 not sexist
|
87 |
85 sexist
|
88 |
-
86
|
89 |
87 sexist
|
90 |
88 not sexist
|
91 |
89 sexist
|
@@ -104,7 +104,7 @@ index prediction
|
|
104 |
102 not sexist
|
105 |
103 sexist
|
106 |
104 not sexist
|
107 |
-
105 sexist
|
108 |
106 not sexist
|
109 |
107 not sexist
|
110 |
108 not sexist
|
@@ -142,7 +142,7 @@ index prediction
|
|
142 |
140 not sexist
|
143 |
141 not sexist
|
144 |
142 not sexist
|
145 |
-
143 sexist
|
146 |
144 not sexist
|
147 |
145 sexist
|
148 |
146 not sexist
|
@@ -203,7 +203,7 @@ index prediction
|
|
203 |
201 sexist
|
204 |
202 not sexist
|
205 |
203 not sexist
|
206 |
-
204
|
207 |
205 sexist
|
208 |
206 sexist
|
209 |
207 not sexist
|
@@ -223,7 +223,7 @@ index prediction
|
|
223 |
221 not sexist
|
224 |
222 not sexist
|
225 |
223 not sexist
|
226 |
-
224
|
227 |
225 not sexist
|
228 |
226 not sexist
|
229 |
227 not sexist
|
@@ -255,7 +255,7 @@ index prediction
|
|
255 |
253 not sexist
|
256 |
254 not sexist
|
257 |
255 not sexist
|
258 |
-
256
|
259 |
257 not sexist
|
260 |
258 not sexist
|
261 |
259 not sexist
|
@@ -275,7 +275,7 @@ index prediction
|
|
275 |
273 not sexist
|
276 |
274 not sexist
|
277 |
275 not sexist
|
278 |
-
276
|
279 |
277 sexist
|
280 |
278 not sexist
|
281 |
279 not sexist
|
@@ -305,7 +305,7 @@ index prediction
|
|
305 |
303 sexist
|
306 |
304 not sexist
|
307 |
305 not sexist
|
308 |
-
306
|
309 |
307 not sexist
|
310 |
308 sexist
|
311 |
309 not sexist
|
@@ -341,7 +341,7 @@ index prediction
|
|
341 |
339 not sexist
|
342 |
340 not sexist
|
343 |
341 not sexist
|
344 |
-
342
|
345 |
343 not sexist
|
346 |
344 not sexist
|
347 |
345 not sexist
|
@@ -380,7 +380,7 @@ index prediction
|
|
380 |
378 not sexist
|
381 |
379 not sexist
|
382 |
380 not sexist
|
383 |
-
381 sexist
|
384 |
382 not sexist
|
385 |
383 not sexist
|
386 |
384 sexist
|
@@ -443,7 +443,7 @@ index prediction
|
|
443 |
441 not sexist
|
444 |
442 sexist
|
445 |
443 not sexist
|
446 |
-
444 sexist
|
447 |
445 sexist
|
448 |
446 sexist
|
449 |
447 not sexist
|
@@ -514,7 +514,7 @@ index prediction
|
|
514 |
512 not sexist
|
515 |
513 not sexist
|
516 |
514 not sexist
|
517 |
-
515 sexist
|
518 |
516 not sexist
|
519 |
517 sexist
|
520 |
518 not sexist
|
@@ -541,7 +541,7 @@ index prediction
|
|
541 |
539 sexist
|
542 |
540 not sexist
|
543 |
541 not sexist
|
544 |
-
542
|
545 |
543 not sexist
|
546 |
544 not sexist
|
547 |
545 sexist
|
@@ -561,7 +561,7 @@ index prediction
|
|
561 |
559 not sexist
|
562 |
560 not sexist
|
563 |
561 sexist
|
564 |
-
562 sexist
|
565 |
563 not sexist
|
566 |
564 not sexist
|
567 |
565 sexist
|
@@ -581,7 +581,7 @@ index prediction
|
|
581 |
579 not sexist
|
582 |
580 sexist
|
583 |
581 sexist
|
584 |
-
582
|
585 |
583 not sexist
|
586 |
584 not sexist
|
587 |
585 not sexist
|
@@ -631,16 +631,16 @@ index prediction
|
|
631 |
629 not sexist
|
632 |
630 not sexist
|
633 |
631 not sexist
|
634 |
-
632 sexist
|
635 |
633 not sexist
|
636 |
634 not sexist
|
637 |
635 sexist
|
638 |
636 not sexist
|
639 |
637 not sexist
|
640 |
-
638 sexist
|
641 |
639 not sexist
|
642 |
640 not sexist
|
643 |
-
641 sexist
|
644 |
642 not sexist
|
645 |
643 not sexist
|
646 |
644 not sexist
|
@@ -672,7 +672,7 @@ index prediction
|
|
672 |
670 not sexist
|
673 |
671 not sexist
|
674 |
672 not sexist
|
675 |
-
673
|
676 |
674 sexist
|
677 |
675 sexist
|
678 |
676 not sexist
|
@@ -701,7 +701,7 @@ index prediction
|
|
701 |
699 sexist
|
702 |
700 not sexist
|
703 |
701 sexist
|
704 |
-
702 sexist
|
705 |
703 not sexist
|
706 |
704 not sexist
|
707 |
705 not sexist
|
@@ -720,7 +720,7 @@ index prediction
|
|
720 |
718 not sexist
|
721 |
719 not sexist
|
722 |
720 not sexist
|
723 |
-
721
|
724 |
722 not sexist
|
725 |
723 sexist
|
726 |
724 sexist
|
@@ -812,7 +812,7 @@ index prediction
|
|
812 |
810 not sexist
|
813 |
811 not sexist
|
814 |
812 not sexist
|
815 |
-
813 sexist
|
816 |
814 not sexist
|
817 |
815 not sexist
|
818 |
816 sexist
|
@@ -846,7 +846,7 @@ index prediction
|
|
846 |
844 not sexist
|
847 |
845 not sexist
|
848 |
846 not sexist
|
849 |
-
847 sexist
|
850 |
848 not sexist
|
851 |
849 sexist
|
852 |
850 not sexist
|
@@ -920,7 +920,7 @@ index prediction
|
|
920 |
918 not sexist
|
921 |
919 sexist
|
922 |
920 sexist
|
923 |
-
921
|
924 |
922 sexist
|
925 |
923 not sexist
|
926 |
924 sexist
|
@@ -937,7 +937,7 @@ index prediction
|
|
937 |
935 sexist
|
938 |
936 not sexist
|
939 |
937 not sexist
|
940 |
-
938
|
941 |
939 not sexist
|
942 |
940 not sexist
|
943 |
941 not sexist
|
@@ -949,7 +949,7 @@ index prediction
|
|
949 |
947 not sexist
|
950 |
948 not sexist
|
951 |
949 sexist
|
952 |
-
950 sexist
|
953 |
951 sexist
|
954 |
952 not sexist
|
955 |
953 not sexist
|
@@ -965,9 +965,9 @@ index prediction
|
|
965 |
963 not sexist
|
966 |
964 not sexist
|
967 |
965 not sexist
|
968 |
-
966 sexist
|
969 |
967 not sexist
|
970 |
-
968 sexist
|
971 |
969 not sexist
|
972 |
970 not sexist
|
973 |
971 not sexist
|
@@ -999,7 +999,7 @@ index prediction
|
|
999 |
997 sexist
|
1000 |
998 not sexist
|
1001 |
999 sexist
|
1002 |
-
1000 sexist
|
1003 |
1001 sexist
|
1004 |
1002 sexist
|
1005 |
1003 sexist
|
@@ -1038,7 +1038,7 @@ index prediction
|
|
1038 |
1036 sexist
|
1039 |
1037 not sexist
|
1040 |
1038 not sexist
|
1041 |
-
1039
|
1042 |
1040 not sexist
|
1043 |
1041 sexist
|
1044 |
1042 not sexist
|
@@ -1063,7 +1063,7 @@ index prediction
|
|
1063 |
1061 not sexist
|
1064 |
1062 sexist
|
1065 |
1063 not sexist
|
1066 |
-
1064 sexist
|
1067 |
1065 not sexist
|
1068 |
1066 not sexist
|
1069 |
1067 sexist
|
@@ -1119,7 +1119,7 @@ index prediction
|
|
1119 |
1117 not sexist
|
1120 |
1118 sexist
|
1121 |
1119 not sexist
|
1122 |
-
1120 sexist
|
1123 |
1121 not sexist
|
1124 |
1122 not sexist
|
1125 |
1123 sexist
|
@@ -1194,12 +1194,12 @@ index prediction
|
|
1194 |
1192 not sexist
|
1195 |
1193 not sexist
|
1196 |
1194 not sexist
|
1197 |
-
1195
|
1198 |
1196 not sexist
|
1199 |
1197 not sexist
|
1200 |
1198 not sexist
|
1201 |
1199 not sexist
|
1202 |
-
1200 sexist
|
1203 |
1201 not sexist
|
1204 |
1202 not sexist
|
1205 |
1203 not sexist
|
@@ -1234,7 +1234,7 @@ index prediction
|
|
1234 |
1232 not sexist
|
1235 |
1233 not sexist
|
1236 |
1234 not sexist
|
1237 |
-
1235
|
1238 |
1236 not sexist
|
1239 |
1237 not sexist
|
1240 |
1238 not sexist
|
@@ -1342,7 +1342,7 @@ index prediction
|
|
1342 |
1340 not sexist
|
1343 |
1341 not sexist
|
1344 |
1342 sexist
|
1345 |
-
1343
|
1346 |
1344 not sexist
|
1347 |
1345 not sexist
|
1348 |
1346 not sexist
|
@@ -1367,12 +1367,12 @@ index prediction
|
|
1367 |
1365 not sexist
|
1368 |
1366 not sexist
|
1369 |
1367 not sexist
|
1370 |
-
1368
|
1371 |
1369 sexist
|
1372 |
1370 not sexist
|
1373 |
1371 not sexist
|
1374 |
1372 not sexist
|
1375 |
-
1373
|
1376 |
1374 not sexist
|
1377 |
1375 not sexist
|
1378 |
1376 not sexist
|
@@ -1450,7 +1450,7 @@ index prediction
|
|
1450 |
1448 not sexist
|
1451 |
1449 not sexist
|
1452 |
1450 not sexist
|
1453 |
-
1451
|
1454 |
1452 sexist
|
1455 |
1453 not sexist
|
1456 |
1454 not sexist
|
@@ -1461,7 +1461,7 @@ index prediction
|
|
1461 |
1459 sexist
|
1462 |
1460 not sexist
|
1463 |
1461 not sexist
|
1464 |
-
1462
|
1465 |
1463 not sexist
|
1466 |
1464 not sexist
|
1467 |
1465 not sexist
|
@@ -1487,7 +1487,7 @@ index prediction
|
|
1487 |
1485 sexist
|
1488 |
1486 not sexist
|
1489 |
1487 sexist
|
1490 |
-
1488
|
1491 |
1489 not sexist
|
1492 |
1490 sexist
|
1493 |
1491 not sexist
|
@@ -1580,12 +1580,12 @@ index prediction
|
|
1580 |
1578 not sexist
|
1581 |
1579 sexist
|
1582 |
1580 not sexist
|
1583 |
-
1581 sexist
|
1584 |
1582 not sexist
|
1585 |
1583 not sexist
|
1586 |
1584 not sexist
|
1587 |
1585 not sexist
|
1588 |
-
1586 sexist
|
1589 |
1587 not sexist
|
1590 |
1588 not sexist
|
1591 |
1589 not sexist
|
@@ -1672,14 +1672,14 @@ index prediction
|
|
1672 |
1670 sexist
|
1673 |
1671 not sexist
|
1674 |
1672 not sexist
|
1675 |
-
1673
|
1676 |
1674 not sexist
|
1677 |
1675 not sexist
|
1678 |
1676 sexist
|
1679 |
1677 not sexist
|
1680 |
1678 not sexist
|
1681 |
1679 not sexist
|
1682 |
-
1680 sexist
|
1683 |
1681 not sexist
|
1684 |
1682 not sexist
|
1685 |
1683 not sexist
|
@@ -1693,7 +1693,7 @@ index prediction
|
|
1693 |
1691 not sexist
|
1694 |
1692 not sexist
|
1695 |
1693 not sexist
|
1696 |
-
1694
|
1697 |
1695 not sexist
|
1698 |
1696 not sexist
|
1699 |
1697 not sexist
|
@@ -1784,7 +1784,7 @@ index prediction
|
|
1784 |
1782 not sexist
|
1785 |
1783 sexist
|
1786 |
1784 not sexist
|
1787 |
-
1785 sexist
|
1788 |
1786 sexist
|
1789 |
1787 sexist
|
1790 |
1788 not sexist
|
@@ -1858,7 +1858,7 @@ index prediction
|
|
1858 |
1856 not sexist
|
1859 |
1857 sexist
|
1860 |
1858 not sexist
|
1861 |
-
1859 sexist
|
1862 |
1860 not sexist
|
1863 |
1861 not sexist
|
1864 |
1862 not sexist
|
@@ -1934,7 +1934,7 @@ index prediction
|
|
1934 |
1932 not sexist
|
1935 |
1933 sexist
|
1936 |
1934 not sexist
|
1937 |
-
1935
|
1938 |
1936 not sexist
|
1939 |
1937 not sexist
|
1940 |
1938 not sexist
|
@@ -1966,7 +1966,7 @@ index prediction
|
|
1966 |
1964 not sexist
|
1967 |
1965 not sexist
|
1968 |
1966 not sexist
|
1969 |
-
1967
|
1970 |
1968 not sexist
|
1971 |
1969 sexist
|
1972 |
1970 not sexist
|
@@ -1994,7 +1994,7 @@ index prediction
|
|
1994 |
1992 not sexist
|
1995 |
1993 not sexist
|
1996 |
1994 not sexist
|
1997 |
-
1995 sexist
|
1998 |
1996 not sexist
|
1999 |
1997 not sexist
|
2000 |
1998 sexist
|
@@ -2005,7 +2005,7 @@ index prediction
|
|
2005 |
2003 not sexist
|
2006 |
2004 not sexist
|
2007 |
2005 sexist
|
2008 |
-
2006 sexist
|
2009 |
2007 sexist
|
2010 |
2008 not sexist
|
2011 |
2009 not sexist
|
@@ -2014,7 +2014,7 @@ index prediction
|
|
2014 |
2012 not sexist
|
2015 |
2013 not sexist
|
2016 |
2014 not sexist
|
2017 |
-
2015
|
2018 |
2016 not sexist
|
2019 |
2017 not sexist
|
2020 |
2018 not sexist
|
@@ -2034,7 +2034,7 @@ index prediction
|
|
2034 |
2032 sexist
|
2035 |
2033 not sexist
|
2036 |
2034 not sexist
|
2037 |
-
2035 sexist
|
2038 |
2036 not sexist
|
2039 |
2037 sexist
|
2040 |
2038 not sexist
|
@@ -2080,8 +2080,8 @@ index prediction
|
|
2080 |
2078 not sexist
|
2081 |
2079 not sexist
|
2082 |
2080 sexist
|
2083 |
-
2081 sexist
|
2084 |
-
2082 sexist
|
2085 |
2083 not sexist
|
2086 |
2084 not sexist
|
2087 |
2085 not sexist
|
@@ -2121,7 +2121,7 @@ index prediction
|
|
2121 |
2119 sexist
|
2122 |
2120 not sexist
|
2123 |
2121 not sexist
|
2124 |
-
2122
|
2125 |
2123 sexist
|
2126 |
2124 not sexist
|
2127 |
2125 sexist
|
@@ -2266,13 +2266,13 @@ index prediction
|
|
2266 |
2264 not sexist
|
2267 |
2265 not sexist
|
2268 |
2266 not sexist
|
2269 |
-
2267 sexist
|
2270 |
2268 not sexist
|
2271 |
2269 not sexist
|
2272 |
-
2270 sexist
|
2273 |
2271 not sexist
|
2274 |
2272 not sexist
|
2275 |
-
2273 sexist
|
2276 |
2274 not sexist
|
2277 |
2275 not sexist
|
2278 |
2276 not sexist
|
@@ -2345,7 +2345,7 @@ index prediction
|
|
2345 |
2343 not sexist
|
2346 |
2344 sexist
|
2347 |
2345 not sexist
|
2348 |
-
2346
|
2349 |
2347 not sexist
|
2350 |
2348 not sexist
|
2351 |
2349 not sexist
|
@@ -2389,7 +2389,7 @@ index prediction
|
|
2389 |
2387 not sexist
|
2390 |
2388 not sexist
|
2391 |
2389 not sexist
|
2392 |
-
2390
|
2393 |
2391 not sexist
|
2394 |
2392 not sexist
|
2395 |
2393 sexist
|
@@ -2451,7 +2451,7 @@ index prediction
|
|
2451 |
2449 not sexist
|
2452 |
2450 not sexist
|
2453 |
2451 not sexist
|
2454 |
-
2452 sexist
|
2455 |
2453 not sexist
|
2456 |
2454 sexist
|
2457 |
2455 not sexist
|
@@ -2501,7 +2501,7 @@ index prediction
|
|
2501 |
2499 sexist
|
2502 |
2500 not sexist
|
2503 |
2501 not sexist
|
2504 |
-
2502
|
2505 |
2503 not sexist
|
2506 |
2504 not sexist
|
2507 |
2505 sexist
|
@@ -2551,7 +2551,7 @@ index prediction
|
|
2551 |
2549 not sexist
|
2552 |
2550 not sexist
|
2553 |
2551 not sexist
|
2554 |
-
2552
|
2555 |
2553 not sexist
|
2556 |
2554 sexist
|
2557 |
2555 sexist
|
@@ -2579,7 +2579,7 @@ index prediction
|
|
2579 |
2577 not sexist
|
2580 |
2578 not sexist
|
2581 |
2579 sexist
|
2582 |
-
2580
|
2583 |
2581 sexist
|
2584 |
2582 not sexist
|
2585 |
2583 sexist
|
@@ -2623,7 +2623,7 @@ index prediction
|
|
2623 |
2621 not sexist
|
2624 |
2622 not sexist
|
2625 |
2623 not sexist
|
2626 |
-
2624 sexist
|
2627 |
2625 not sexist
|
2628 |
2626 not sexist
|
2629 |
2627 not sexist
|
@@ -2640,7 +2640,7 @@ index prediction
|
|
2640 |
2638 not sexist
|
2641 |
2639 sexist
|
2642 |
2640 not sexist
|
2643 |
-
2641
|
2644 |
2642 not sexist
|
2645 |
2643 not sexist
|
2646 |
2644 sexist
|
@@ -2676,7 +2676,7 @@ index prediction
|
|
2676 |
2674 not sexist
|
2677 |
2675 not sexist
|
2678 |
2676 not sexist
|
2679 |
-
2677
|
2680 |
2678 not sexist
|
2681 |
2679 not sexist
|
2682 |
2680 not sexist
|
@@ -2772,7 +2772,7 @@ index prediction
|
|
2772 |
2770 not sexist
|
2773 |
2771 not sexist
|
2774 |
2772 not sexist
|
2775 |
-
2773
|
2776 |
2774 not sexist
|
2777 |
2775 not sexist
|
2778 |
2776 not sexist
|
@@ -2796,16 +2796,16 @@ index prediction
|
|
2796 |
2794 not sexist
|
2797 |
2795 not sexist
|
2798 |
2796 not sexist
|
2799 |
-
2797
|
2800 |
2798 not sexist
|
2801 |
2799 not sexist
|
2802 |
2800 not sexist
|
2803 |
2801 not sexist
|
2804 |
2802 sexist
|
2805 |
2803 not sexist
|
2806 |
-
2804
|
2807 |
2805 not sexist
|
2808 |
-
2806
|
2809 |
2807 not sexist
|
2810 |
2808 not sexist
|
2811 |
2809 not sexist
|
@@ -2870,7 +2870,7 @@ index prediction
|
|
2870 |
2868 sexist
|
2871 |
2869 not sexist
|
2872 |
2870 not sexist
|
2873 |
-
2871 sexist
|
2874 |
2872 not sexist
|
2875 |
2873 not sexist
|
2876 |
2874 not sexist
|
@@ -2969,7 +2969,7 @@ index prediction
|
|
2969 |
2967 not sexist
|
2970 |
2968 not sexist
|
2971 |
2969 not sexist
|
2972 |
-
2970 sexist
|
2973 |
2971 not sexist
|
2974 |
2972 sexist
|
2975 |
2973 sexist
|
@@ -2989,10 +2989,10 @@ index prediction
|
|
2989 |
2987 not sexist
|
2990 |
2988 not sexist
|
2991 |
2989 not sexist
|
2992 |
-
2990
|
2993 |
2991 not sexist
|
2994 |
2992 sexist
|
2995 |
-
2993 sexist
|
2996 |
2994 sexist
|
2997 |
2995 sexist
|
2998 |
2996 not sexist
|
@@ -3064,7 +3064,7 @@ index prediction
|
|
3064 |
3062 not sexist
|
3065 |
3063 not sexist
|
3066 |
3064 not sexist
|
3067 |
-
3065 sexist
|
3068 |
3066 not sexist
|
3069 |
3067 not sexist
|
3070 |
3068 not sexist
|
@@ -3084,7 +3084,7 @@ index prediction
|
|
3084 |
3082 not sexist
|
3085 |
3083 not sexist
|
3086 |
3084 not sexist
|
3087 |
-
3085
|
3088 |
3086 not sexist
|
3089 |
3087 sexist
|
3090 |
3088 not sexist
|
@@ -3189,7 +3189,7 @@ index prediction
|
|
3189 |
3187 not sexist
|
3190 |
3188 sexist
|
3191 |
3189 sexist
|
3192 |
-
3190 sexist
|
3193 |
3191 not sexist
|
3194 |
3192 not sexist
|
3195 |
3193 sexist
|
@@ -3259,7 +3259,7 @@ index prediction
|
|
3259 |
3257 not sexist
|
3260 |
3258 not sexist
|
3261 |
3259 sexist
|
3262 |
-
3260
|
3263 |
3261 sexist
|
3264 |
3262 sexist
|
3265 |
3263 not sexist
|
@@ -3393,7 +3393,7 @@ index prediction
|
|
3393 |
3391 not sexist
|
3394 |
3392 not sexist
|
3395 |
3393 not sexist
|
3396 |
-
3394 sexist
|
3397 |
3395 not sexist
|
3398 |
3396 not sexist
|
3399 |
3397 not sexist
|
@@ -3411,7 +3411,7 @@ index prediction
|
|
3411 |
3409 not sexist
|
3412 |
3410 not sexist
|
3413 |
3411 not sexist
|
3414 |
-
3412
|
3415 |
3413 not sexist
|
3416 |
3414 not sexist
|
3417 |
3415 not sexist
|
@@ -3423,7 +3423,7 @@ index prediction
|
|
3423 |
3421 not sexist
|
3424 |
3422 not sexist
|
3425 |
3423 not sexist
|
3426 |
-
3424 sexist
|
3427 |
3425 not sexist
|
3428 |
3426 not sexist
|
3429 |
3427 sexist
|
@@ -3438,7 +3438,7 @@ index prediction
|
|
3438 |
3436 not sexist
|
3439 |
3437 not sexist
|
3440 |
3438 not sexist
|
3441 |
-
3439 sexist
|
3442 |
3440 not sexist
|
3443 |
3441 not sexist
|
3444 |
3442 not sexist
|
@@ -3465,7 +3465,7 @@ index prediction
|
|
3465 |
3463 not sexist
|
3466 |
3464 not sexist
|
3467 |
3465 not sexist
|
3468 |
-
3466 sexist
|
3469 |
3467 not sexist
|
3470 |
3468 sexist
|
3471 |
3469 not sexist
|
@@ -3524,7 +3524,7 @@ index prediction
|
|
3524 |
3522 not sexist
|
3525 |
3523 not sexist
|
3526 |
3524 not sexist
|
3527 |
-
3525 sexist
|
3528 |
3526 not sexist
|
3529 |
3527 not sexist
|
3530 |
3528 not sexist
|
@@ -3533,7 +3533,7 @@ index prediction
|
|
3533 |
3531 not sexist
|
3534 |
3532 not sexist
|
3535 |
3533 not sexist
|
3536 |
-
3534 sexist
|
3537 |
3535 not sexist
|
3538 |
3536 not sexist
|
3539 |
3537 not sexist
|
@@ -3633,7 +3633,7 @@ index prediction
|
|
3633 |
3631 not sexist
|
3634 |
3632 not sexist
|
3635 |
3633 not sexist
|
3636 |
-
3634 sexist
|
3637 |
3635 not sexist
|
3638 |
3636 sexist
|
3639 |
3637 not sexist
|
@@ -3668,7 +3668,7 @@ index prediction
|
|
3668 |
3666 not sexist
|
3669 |
3667 not sexist
|
3670 |
3668 not sexist
|
3671 |
-
3669
|
3672 |
3670 not sexist
|
3673 |
3671 not sexist
|
3674 |
3672 not sexist
|
@@ -3727,7 +3727,7 @@ index prediction
|
|
3727 |
3725 not sexist
|
3728 |
3726 not sexist
|
3729 |
3727 not sexist
|
3730 |
-
3728 sexist
|
3731 |
3729 not sexist
|
3732 |
3730 not sexist
|
3733 |
3731 sexist
|
@@ -3786,8 +3786,8 @@ index prediction
|
|
3786 |
3784 not sexist
|
3787 |
3785 sexist
|
3788 |
3786 not sexist
|
3789 |
-
3787 sexist
|
3790 |
-
3788
|
3791 |
3789 not sexist
|
3792 |
3790 not sexist
|
3793 |
3791 not sexist
|
@@ -3903,7 +3903,7 @@ index prediction
|
|
3903 |
3901 not sexist
|
3904 |
3902 not sexist
|
3905 |
3903 not sexist
|
3906 |
-
3904
|
3907 |
3905 not sexist
|
3908 |
3906 not sexist
|
3909 |
3907 sexist
|
@@ -3923,7 +3923,7 @@ index prediction
|
|
3923 |
3921 not sexist
|
3924 |
3922 not sexist
|
3925 |
3923 not sexist
|
3926 |
-
3924
|
3927 |
3925 not sexist
|
3928 |
3926 not sexist
|
3929 |
3927 not sexist
|
@@ -3975,7 +3975,7 @@ index prediction
|
|
3975 |
3973 not sexist
|
3976 |
3974 not sexist
|
3977 |
3975 not sexist
|
3978 |
-
3976 sexist
|
3979 |
3977 not sexist
|
3980 |
3978 not sexist
|
3981 |
3979 not sexist
|
|
|
33 |
31 not sexist
|
34 |
32 not sexist
|
35 |
33 not sexist
|
36 |
+
34 sexist
|
37 |
+
35 sexist
|
38 |
36 not sexist
|
39 |
37 not sexist
|
40 |
38 not sexist
|
|
|
54 |
52 not sexist
|
55 |
53 not sexist
|
56 |
54 not sexist
|
57 |
+
55 not sexist
|
58 |
56 not sexist
|
59 |
57 not sexist
|
60 |
58 not sexist
|
|
|
85 |
83 not sexist
|
86 |
84 not sexist
|
87 |
85 sexist
|
88 |
+
86 sexist
|
89 |
87 sexist
|
90 |
88 not sexist
|
91 |
89 sexist
|
|
|
104 |
102 not sexist
|
105 |
103 sexist
|
106 |
104 not sexist
|
107 |
+
105 not sexist
|
108 |
106 not sexist
|
109 |
107 not sexist
|
110 |
108 not sexist
|
|
|
142 |
140 not sexist
|
143 |
141 not sexist
|
144 |
142 not sexist
|
145 |
+
143 not sexist
|
146 |
144 not sexist
|
147 |
145 sexist
|
148 |
146 not sexist
|
|
|
203 |
201 sexist
|
204 |
202 not sexist
|
205 |
203 not sexist
|
206 |
+
204 sexist
|
207 |
205 sexist
|
208 |
206 sexist
|
209 |
207 not sexist
|
|
|
223 |
221 not sexist
|
224 |
222 not sexist
|
225 |
223 not sexist
|
226 |
+
224 sexist
|
227 |
225 not sexist
|
228 |
226 not sexist
|
229 |
227 not sexist
|
|
|
255 |
253 not sexist
|
256 |
254 not sexist
|
257 |
255 not sexist
|
258 |
+
256 sexist
|
259 |
257 not sexist
|
260 |
258 not sexist
|
261 |
259 not sexist
|
|
|
275 |
273 not sexist
|
276 |
274 not sexist
|
277 |
275 not sexist
|
278 |
+
276 sexist
|
279 |
277 sexist
|
280 |
278 not sexist
|
281 |
279 not sexist
|
|
|
305 |
303 sexist
|
306 |
304 not sexist
|
307 |
305 not sexist
|
308 |
+
306 sexist
|
309 |
307 not sexist
|
310 |
308 sexist
|
311 |
309 not sexist
|
|
|
341 |
339 not sexist
|
342 |
340 not sexist
|
343 |
341 not sexist
|
344 |
+
342 sexist
|
345 |
343 not sexist
|
346 |
344 not sexist
|
347 |
345 not sexist
|
|
|
380 |
378 not sexist
|
381 |
379 not sexist
|
382 |
380 not sexist
|
383 |
+
381 not sexist
|
384 |
382 not sexist
|
385 |
383 not sexist
|
386 |
384 sexist
|
|
|
443 |
441 not sexist
|
444 |
442 sexist
|
445 |
443 not sexist
|
446 |
+
444 not sexist
|
447 |
445 sexist
|
448 |
446 sexist
|
449 |
447 not sexist
|
|
|
514 |
512 not sexist
|
515 |
513 not sexist
|
516 |
514 not sexist
|
517 |
+
515 not sexist
|
518 |
516 not sexist
|
519 |
517 sexist
|
520 |
518 not sexist
|
|
|
541 |
539 sexist
|
542 |
540 not sexist
|
543 |
541 not sexist
|
544 |
+
542 sexist
|
545 |
543 not sexist
|
546 |
544 not sexist
|
547 |
545 sexist
|
|
|
561 |
559 not sexist
|
562 |
560 not sexist
|
563 |
561 sexist
|
564 |
+
562 not sexist
|
565 |
563 not sexist
|
566 |
564 not sexist
|
567 |
565 sexist
|
|
|
581 |
579 not sexist
|
582 |
580 sexist
|
583 |
581 sexist
|
584 |
+
582 sexist
|
585 |
583 not sexist
|
586 |
584 not sexist
|
587 |
585 not sexist
|
|
|
631 |
629 not sexist
|
632 |
630 not sexist
|
633 |
631 not sexist
|
634 |
+
632 not sexist
|
635 |
633 not sexist
|
636 |
634 not sexist
|
637 |
635 sexist
|
638 |
636 not sexist
|
639 |
637 not sexist
|
640 |
+
638 not sexist
|
641 |
639 not sexist
|
642 |
640 not sexist
|
643 |
+
641 not sexist
|
644 |
642 not sexist
|
645 |
643 not sexist
|
646 |
644 not sexist
|
|
|
672 |
670 not sexist
|
673 |
671 not sexist
|
674 |
672 not sexist
|
675 |
+
673 sexist
|
676 |
674 sexist
|
677 |
675 sexist
|
678 |
676 not sexist
|
|
|
701 |
699 sexist
|
702 |
700 not sexist
|
703 |
701 sexist
|
704 |
+
702 not sexist
|
705 |
703 not sexist
|
706 |
704 not sexist
|
707 |
705 not sexist
|
|
|
720 |
718 not sexist
|
721 |
719 not sexist
|
722 |
720 not sexist
|
723 |
+
721 sexist
|
724 |
722 not sexist
|
725 |
723 sexist
|
726 |
724 sexist
|
|
|
812 |
810 not sexist
|
813 |
811 not sexist
|
814 |
812 not sexist
|
815 |
+
813 not sexist
|
816 |
814 not sexist
|
817 |
815 not sexist
|
818 |
816 sexist
|
|
|
846 |
844 not sexist
|
847 |
845 not sexist
|
848 |
846 not sexist
|
849 |
+
847 not sexist
|
850 |
848 not sexist
|
851 |
849 sexist
|
852 |
850 not sexist
|
|
|
920 |
918 not sexist
|
921 |
919 sexist
|
922 |
920 sexist
|
923 |
+
921 sexist
|
924 |
922 sexist
|
925 |
923 not sexist
|
926 |
924 sexist
|
|
|
937 |
935 sexist
|
938 |
936 not sexist
|
939 |
937 not sexist
|
940 |
+
938 sexist
|
941 |
939 not sexist
|
942 |
940 not sexist
|
943 |
941 not sexist
|
|
|
949 |
947 not sexist
|
950 |
948 not sexist
|
951 |
949 sexist
|
952 |
+
950 not sexist
|
953 |
951 sexist
|
954 |
952 not sexist
|
955 |
953 not sexist
|
|
|
965 |
963 not sexist
|
966 |
964 not sexist
|
967 |
965 not sexist
|
968 |
+
966 not sexist
|
969 |
967 not sexist
|
970 |
+
968 not sexist
|
971 |
969 not sexist
|
972 |
970 not sexist
|
973 |
971 not sexist
|
|
|
999 |
997 sexist
|
1000 |
998 not sexist
|
1001 |
999 sexist
|
1002 |
+
1000 not sexist
|
1003 |
1001 sexist
|
1004 |
1002 sexist
|
1005 |
1003 sexist
|
|
|
1038 |
1036 sexist
|
1039 |
1037 not sexist
|
1040 |
1038 not sexist
|
1041 |
+
1039 sexist
|
1042 |
1040 not sexist
|
1043 |
1041 sexist
|
1044 |
1042 not sexist
|
|
|
1063 |
1061 not sexist
|
1064 |
1062 sexist
|
1065 |
1063 not sexist
|
1066 |
+
1064 not sexist
|
1067 |
1065 not sexist
|
1068 |
1066 not sexist
|
1069 |
1067 sexist
|
|
|
1119 |
1117 not sexist
|
1120 |
1118 sexist
|
1121 |
1119 not sexist
|
1122 |
+
1120 not sexist
|
1123 |
1121 not sexist
|
1124 |
1122 not sexist
|
1125 |
1123 sexist
|
|
|
1194 |
1192 not sexist
|
1195 |
1193 not sexist
|
1196 |
1194 not sexist
|
1197 |
+
1195 sexist
|
1198 |
1196 not sexist
|
1199 |
1197 not sexist
|
1200 |
1198 not sexist
|
1201 |
1199 not sexist
|
1202 |
+
1200 not sexist
|
1203 |
1201 not sexist
|
1204 |
1202 not sexist
|
1205 |
1203 not sexist
|
|
|
1234 |
1232 not sexist
|
1235 |
1233 not sexist
|
1236 |
1234 not sexist
|
1237 |
+
1235 sexist
|
1238 |
1236 not sexist
|
1239 |
1237 not sexist
|
1240 |
1238 not sexist
|
|
|
1342 |
1340 not sexist
|
1343 |
1341 not sexist
|
1344 |
1342 sexist
|
1345 |
+
1343 sexist
|
1346 |
1344 not sexist
|
1347 |
1345 not sexist
|
1348 |
1346 not sexist
|
|
|
1367 |
1365 not sexist
|
1368 |
1366 not sexist
|
1369 |
1367 not sexist
|
1370 |
+
1368 sexist
|
1371 |
1369 sexist
|
1372 |
1370 not sexist
|
1373 |
1371 not sexist
|
1374 |
1372 not sexist
|
1375 |
+
1373 sexist
|
1376 |
1374 not sexist
|
1377 |
1375 not sexist
|
1378 |
1376 not sexist
|
|
|
1450 |
1448 not sexist
|
1451 |
1449 not sexist
|
1452 |
1450 not sexist
|
1453 |
+
1451 sexist
|
1454 |
1452 sexist
|
1455 |
1453 not sexist
|
1456 |
1454 not sexist
|
|
|
1461 |
1459 sexist
|
1462 |
1460 not sexist
|
1463 |
1461 not sexist
|
1464 |
+
1462 sexist
|
1465 |
1463 not sexist
|
1466 |
1464 not sexist
|
1467 |
1465 not sexist
|
|
|
1487 |
1485 sexist
|
1488 |
1486 not sexist
|
1489 |
1487 sexist
|
1490 |
+
1488 sexist
|
1491 |
1489 not sexist
|
1492 |
1490 sexist
|
1493 |
1491 not sexist
|
|
|
1580 |
1578 not sexist
|
1581 |
1579 sexist
|
1582 |
1580 not sexist
|
1583 |
+
1581 not sexist
|
1584 |
1582 not sexist
|
1585 |
1583 not sexist
|
1586 |
1584 not sexist
|
1587 |
1585 not sexist
|
1588 |
+
1586 not sexist
|
1589 |
1587 not sexist
|
1590 |
1588 not sexist
|
1591 |
1589 not sexist
|
|
|
1672 |
1670 sexist
|
1673 |
1671 not sexist
|
1674 |
1672 not sexist
|
1675 |
+
1673 sexist
|
1676 |
1674 not sexist
|
1677 |
1675 not sexist
|
1678 |
1676 sexist
|
1679 |
1677 not sexist
|
1680 |
1678 not sexist
|
1681 |
1679 not sexist
|
1682 |
+
1680 not sexist
|
1683 |
1681 not sexist
|
1684 |
1682 not sexist
|
1685 |
1683 not sexist
|
|
|
1693 |
1691 not sexist
|
1694 |
1692 not sexist
|
1695 |
1693 not sexist
|
1696 |
+
1694 sexist
|
1697 |
1695 not sexist
|
1698 |
1696 not sexist
|
1699 |
1697 not sexist
|
|
|
1784 |
1782 not sexist
|
1785 |
1783 sexist
|
1786 |
1784 not sexist
|
1787 |
+
1785 not sexist
|
1788 |
1786 sexist
|
1789 |
1787 sexist
|
1790 |
1788 not sexist
|
|
|
1858 |
1856 not sexist
|
1859 |
1857 sexist
|
1860 |
1858 not sexist
|
1861 |
+
1859 not sexist
|
1862 |
1860 not sexist
|
1863 |
1861 not sexist
|
1864 |
1862 not sexist
|
|
|
1934 |
1932 not sexist
|
1935 |
1933 sexist
|
1936 |
1934 not sexist
|
1937 |
+
1935 sexist
|
1938 |
1936 not sexist
|
1939 |
1937 not sexist
|
1940 |
1938 not sexist
|
|
|
1966 |
1964 not sexist
|
1967 |
1965 not sexist
|
1968 |
1966 not sexist
|
1969 |
+
1967 sexist
|
1970 |
1968 not sexist
|
1971 |
1969 sexist
|
1972 |
1970 not sexist
|
|
|
1994 |
1992 not sexist
|
1995 |
1993 not sexist
|
1996 |
1994 not sexist
|
1997 |
+
1995 not sexist
|
1998 |
1996 not sexist
|
1999 |
1997 not sexist
|
2000 |
1998 sexist
|
|
|
2005 |
2003 not sexist
|
2006 |
2004 not sexist
|
2007 |
2005 sexist
|
2008 |
+
2006 not sexist
|
2009 |
2007 sexist
|
2010 |
2008 not sexist
|
2011 |
2009 not sexist
|
|
|
2014 |
2012 not sexist
|
2015 |
2013 not sexist
|
2016 |
2014 not sexist
|
2017 |
+
2015 sexist
|
2018 |
2016 not sexist
|
2019 |
2017 not sexist
|
2020 |
2018 not sexist
|
|
|
2034 |
2032 sexist
|
2035 |
2033 not sexist
|
2036 |
2034 not sexist
|
2037 |
+
2035 not sexist
|
2038 |
2036 not sexist
|
2039 |
2037 sexist
|
2040 |
2038 not sexist
|
|
|
2080 |
2078 not sexist
|
2081 |
2079 not sexist
|
2082 |
2080 sexist
|
2083 |
+
2081 not sexist
|
2084 |
+
2082 not sexist
|
2085 |
2083 not sexist
|
2086 |
2084 not sexist
|
2087 |
2085 not sexist
|
|
|
2121 |
2119 sexist
|
2122 |
2120 not sexist
|
2123 |
2121 not sexist
|
2124 |
+
2122 sexist
|
2125 |
2123 sexist
|
2126 |
2124 not sexist
|
2127 |
2125 sexist
|
|
|
2266 |
2264 not sexist
|
2267 |
2265 not sexist
|
2268 |
2266 not sexist
|
2269 |
+
2267 not sexist
|
2270 |
2268 not sexist
|
2271 |
2269 not sexist
|
2272 |
+
2270 not sexist
|
2273 |
2271 not sexist
|
2274 |
2272 not sexist
|
2275 |
+
2273 not sexist
|
2276 |
2274 not sexist
|
2277 |
2275 not sexist
|
2278 |
2276 not sexist
|
|
|
2345 |
2343 not sexist
|
2346 |
2344 sexist
|
2347 |
2345 not sexist
|
2348 |
+
2346 sexist
|
2349 |
2347 not sexist
|
2350 |
2348 not sexist
|
2351 |
2349 not sexist
|
|
|
2389 |
2387 not sexist
|
2390 |
2388 not sexist
|
2391 |
2389 not sexist
|
2392 |
+
2390 sexist
|
2393 |
2391 not sexist
|
2394 |
2392 not sexist
|
2395 |
2393 sexist
|
|
|
2451 |
2449 not sexist
|
2452 |
2450 not sexist
|
2453 |
2451 not sexist
|
2454 |
+
2452 not sexist
|
2455 |
2453 not sexist
|
2456 |
2454 sexist
|
2457 |
2455 not sexist
|
|
|
2501 |
2499 sexist
|
2502 |
2500 not sexist
|
2503 |
2501 not sexist
|
2504 |
+
2502 sexist
|
2505 |
2503 not sexist
|
2506 |
2504 not sexist
|
2507 |
2505 sexist
|
|
|
2551 |
2549 not sexist
|
2552 |
2550 not sexist
|
2553 |
2551 not sexist
|
2554 |
+
2552 sexist
|
2555 |
2553 not sexist
|
2556 |
2554 sexist
|
2557 |
2555 sexist
|
|
|
2579 |
2577 not sexist
|
2580 |
2578 not sexist
|
2581 |
2579 sexist
|
2582 |
+
2580 sexist
|
2583 |
2581 sexist
|
2584 |
2582 not sexist
|
2585 |
2583 sexist
|
|
|
2623 |
2621 not sexist
|
2624 |
2622 not sexist
|
2625 |
2623 not sexist
|
2626 |
+
2624 not sexist
|
2627 |
2625 not sexist
|
2628 |
2626 not sexist
|
2629 |
2627 not sexist
|
|
|
2640 |
2638 not sexist
|
2641 |
2639 sexist
|
2642 |
2640 not sexist
|
2643 |
+
2641 sexist
|
2644 |
2642 not sexist
|
2645 |
2643 not sexist
|
2646 |
2644 sexist
|
|
|
2676 |
2674 not sexist
|
2677 |
2675 not sexist
|
2678 |
2676 not sexist
|
2679 |
+
2677 sexist
|
2680 |
2678 not sexist
|
2681 |
2679 not sexist
|
2682 |
2680 not sexist
|
|
|
2772 |
2770 not sexist
|
2773 |
2771 not sexist
|
2774 |
2772 not sexist
|
2775 |
+
2773 sexist
|
2776 |
2774 not sexist
|
2777 |
2775 not sexist
|
2778 |
2776 not sexist
|
|
|
2796 |
2794 not sexist
|
2797 |
2795 not sexist
|
2798 |
2796 not sexist
|
2799 |
+
2797 sexist
|
2800 |
2798 not sexist
|
2801 |
2799 not sexist
|
2802 |
2800 not sexist
|
2803 |
2801 not sexist
|
2804 |
2802 sexist
|
2805 |
2803 not sexist
|
2806 |
+
2804 sexist
|
2807 |
2805 not sexist
|
2808 |
+
2806 sexist
|
2809 |
2807 not sexist
|
2810 |
2808 not sexist
|
2811 |
2809 not sexist
|
|
|
2870 |
2868 sexist
|
2871 |
2869 not sexist
|
2872 |
2870 not sexist
|
2873 |
+
2871 not sexist
|
2874 |
2872 not sexist
|
2875 |
2873 not sexist
|
2876 |
2874 not sexist
|
|
|
2969 |
2967 not sexist
|
2970 |
2968 not sexist
|
2971 |
2969 not sexist
|
2972 |
+
2970 not sexist
|
2973 |
2971 not sexist
|
2974 |
2972 sexist
|
2975 |
2973 sexist
|
|
|
2989 |
2987 not sexist
|
2990 |
2988 not sexist
|
2991 |
2989 not sexist
|
2992 |
+
2990 sexist
|
2993 |
2991 not sexist
|
2994 |
2992 sexist
|
2995 |
+
2993 not sexist
|
2996 |
2994 sexist
|
2997 |
2995 sexist
|
2998 |
2996 not sexist
|
|
|
3064 |
3062 not sexist
|
3065 |
3063 not sexist
|
3066 |
3064 not sexist
|
3067 |
+
3065 not sexist
|
3068 |
3066 not sexist
|
3069 |
3067 not sexist
|
3070 |
3068 not sexist
|
|
|
3084 |
3082 not sexist
|
3085 |
3083 not sexist
|
3086 |
3084 not sexist
|
3087 |
+
3085 sexist
|
3088 |
3086 not sexist
|
3089 |
3087 sexist
|
3090 |
3088 not sexist
|
|
|
3189 |
3187 not sexist
|
3190 |
3188 sexist
|
3191 |
3189 sexist
|
3192 |
+
3190 not sexist
|
3193 |
3191 not sexist
|
3194 |
3192 not sexist
|
3195 |
3193 sexist
|
|
|
3259 |
3257 not sexist
|
3260 |
3258 not sexist
|
3261 |
3259 sexist
|
3262 |
+
3260 sexist
|
3263 |
3261 sexist
|
3264 |
3262 sexist
|
3265 |
3263 not sexist
|
|
|
3393 |
3391 not sexist
|
3394 |
3392 not sexist
|
3395 |
3393 not sexist
|
3396 |
+
3394 not sexist
|
3397 |
3395 not sexist
|
3398 |
3396 not sexist
|
3399 |
3397 not sexist
|
|
|
3411 |
3409 not sexist
|
3412 |
3410 not sexist
|
3413 |
3411 not sexist
|
3414 |
+
3412 sexist
|
3415 |
3413 not sexist
|
3416 |
3414 not sexist
|
3417 |
3415 not sexist
|
|
|
3423 |
3421 not sexist
|
3424 |
3422 not sexist
|
3425 |
3423 not sexist
|
3426 |
+
3424 not sexist
|
3427 |
3425 not sexist
|
3428 |
3426 not sexist
|
3429 |
3427 sexist
|
|
|
3438 |
3436 not sexist
|
3439 |
3437 not sexist
|
3440 |
3438 not sexist
|
3441 |
+
3439 not sexist
|
3442 |
3440 not sexist
|
3443 |
3441 not sexist
|
3444 |
3442 not sexist
|
|
|
3465 |
3463 not sexist
|
3466 |
3464 not sexist
|
3467 |
3465 not sexist
|
3468 |
+
3466 not sexist
|
3469 |
3467 not sexist
|
3470 |
3468 sexist
|
3471 |
3469 not sexist
|
|
|
3524 |
3522 not sexist
|
3525 |
3523 not sexist
|
3526 |
3524 not sexist
|
3527 |
+
3525 not sexist
|
3528 |
3526 not sexist
|
3529 |
3527 not sexist
|
3530 |
3528 not sexist
|
|
|
3533 |
3531 not sexist
|
3534 |
3532 not sexist
|
3535 |
3533 not sexist
|
3536 |
+
3534 not sexist
|
3537 |
3535 not sexist
|
3538 |
3536 not sexist
|
3539 |
3537 not sexist
|
|
|
3633 |
3631 not sexist
|
3634 |
3632 not sexist
|
3635 |
3633 not sexist
|
3636 |
+
3634 not sexist
|
3637 |
3635 not sexist
|
3638 |
3636 sexist
|
3639 |
3637 not sexist
|
|
|
3668 |
3666 not sexist
|
3669 |
3667 not sexist
|
3670 |
3668 not sexist
|
3671 |
+
3669 sexist
|
3672 |
3670 not sexist
|
3673 |
3671 not sexist
|
3674 |
3672 not sexist
|
|
|
3727 |
3725 not sexist
|
3728 |
3726 not sexist
|
3729 |
3727 not sexist
|
3730 |
+
3728 not sexist
|
3731 |
3729 not sexist
|
3732 |
3730 not sexist
|
3733 |
3731 sexist
|
|
|
3786 |
3784 not sexist
|
3787 |
3785 sexist
|
3788 |
3786 not sexist
|
3789 |
+
3787 not sexist
|
3790 |
+
3788 sexist
|
3791 |
3789 not sexist
|
3792 |
3790 not sexist
|
3793 |
3791 not sexist
|
|
|
3903 |
3901 not sexist
|
3904 |
3902 not sexist
|
3905 |
3903 not sexist
|
3906 |
+
3904 sexist
|
3907 |
3905 not sexist
|
3908 |
3906 not sexist
|
3909 |
3907 sexist
|
|
|
3923 |
3921 not sexist
|
3924 |
3922 not sexist
|
3925 |
3923 not sexist
|
3926 |
+
3924 sexist
|
3927 |
3925 not sexist
|
3928 |
3926 not sexist
|
3929 |
3927 not sexist
|
|
|
3975 |
3973 not sexist
|
3976 |
3974 not sexist
|
3977 |
3975 not sexist
|
3978 |
+
3976 not sexist
|
3979 |
3977 not sexist
|
3980 |
3978 not sexist
|
3981 |
3979 not sexist
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 438007925
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21b0d3a5550e58b7ef30c0020bf27b3cb40aa1df1936fc53f798b5f45ef0f41b
|
3 |
size 438007925
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 16000,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"train_loss": 0.2591003138224284,
|
4 |
+
"train_runtime": 651.1299,
|
5 |
"train_samples": 16000,
|
6 |
+
"train_samples_per_second": 73.718,
|
7 |
+
"train_steps_per_second": 4.607
|
8 |
}
|
trainer_state.json
CHANGED
@@ -9,84 +9,93 @@
|
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.5,
|
12 |
-
"learning_rate": 1.
|
13 |
-
"loss": 0.
|
14 |
"step": 500
|
15 |
},
|
16 |
{
|
17 |
"epoch": 1.0,
|
18 |
-
"learning_rate": 1.
|
19 |
-
"loss": 0.
|
20 |
"step": 1000
|
21 |
},
|
22 |
{
|
23 |
"epoch": 1.0,
|
24 |
-
"eval_accuracy": 0.
|
25 |
-
"eval_classification_report": " precision recall f1-score support\n0 0.
|
26 |
-
"eval_confusion_matrix": "[[
|
27 |
-
"eval_confusion_matrix_norm": "[[0.
|
28 |
-
"eval_f1": 0.
|
29 |
-
"eval_f1_macro": 0.
|
30 |
-
"eval_f1_weighted": 0.
|
31 |
-
"eval_loss": 0.
|
32 |
-
"eval_runtime":
|
33 |
-
"eval_samples_per_second":
|
34 |
-
"eval_steps_per_second":
|
35 |
"step": 1000
|
36 |
},
|
37 |
{
|
38 |
"epoch": 1.5,
|
39 |
-
"learning_rate":
|
40 |
-
"loss": 0.
|
41 |
"step": 1500
|
42 |
},
|
43 |
{
|
44 |
"epoch": 2.0,
|
45 |
-
"learning_rate": 6.
|
46 |
-
"loss": 0.
|
47 |
"step": 2000
|
48 |
},
|
49 |
{
|
50 |
"epoch": 2.0,
|
51 |
-
"eval_accuracy": 0.
|
52 |
-
"eval_classification_report": " precision recall f1-score
|
53 |
-
"eval_confusion_matrix": "[[
|
54 |
-
"eval_confusion_matrix_norm": "[[0.
|
55 |
-
"eval_f1": 0.
|
56 |
-
"eval_f1_macro": 0.
|
57 |
-
"eval_f1_weighted": 0.
|
58 |
-
"eval_loss": 0.
|
59 |
-
"eval_runtime":
|
60 |
-
"eval_samples_per_second":
|
61 |
-
"eval_steps_per_second":
|
62 |
"step": 2000
|
63 |
},
|
64 |
{
|
65 |
"epoch": 2.5,
|
66 |
-
"learning_rate": 3.
|
67 |
-
"loss": 0.
|
68 |
"step": 2500
|
69 |
},
|
70 |
{
|
71 |
"epoch": 3.0,
|
72 |
-
"learning_rate":
|
73 |
-
"loss": 0.
|
74 |
"step": 3000
|
75 |
},
|
76 |
{
|
77 |
"epoch": 3.0,
|
78 |
-
"eval_accuracy": 0.
|
79 |
-
"eval_classification_report": " precision recall f1-score
|
80 |
-
"eval_confusion_matrix": "[[
|
81 |
-
"eval_confusion_matrix_norm": "[[0.
|
82 |
-
"eval_f1": 0.
|
83 |
-
"eval_f1_macro": 0.
|
84 |
-
"eval_f1_weighted": 0.
|
85 |
-
"eval_loss": 0.
|
86 |
-
"eval_runtime":
|
87 |
-
"eval_samples_per_second":
|
88 |
-
"eval_steps_per_second":
|
89 |
"step": 3000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
}
|
91 |
],
|
92 |
"max_steps": 3000,
|
|
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.5,
|
12 |
+
"learning_rate": 1.6666666666666667e-05,
|
13 |
+
"loss": 0.4103,
|
14 |
"step": 500
|
15 |
},
|
16 |
{
|
17 |
"epoch": 1.0,
|
18 |
+
"learning_rate": 1.3333333333333333e-05,
|
19 |
+
"loss": 0.3362,
|
20 |
"step": 1000
|
21 |
},
|
22 |
{
|
23 |
"epoch": 1.0,
|
24 |
+
"eval_accuracy": 0.87225,
|
25 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.899714 0.935644 0.917327 3030.00000\n1 0.770318 0.674227 0.719076 970.00000\naccuracy 0.872250 0.872250 0.872250 0.87225\nmacro avg 0.835016 0.804935 0.818202 4000.00000\nweighted avg 0.868336 0.872250 0.869251 4000.00000",
|
26 |
+
"eval_confusion_matrix": "[[2835 195]\n [ 316 654]]",
|
27 |
+
"eval_confusion_matrix_norm": "[[0.93564356 0.06435644]\n [0.3257732 0.6742268 ]]",
|
28 |
+
"eval_f1": 0.7190764156129743,
|
29 |
+
"eval_f1_macro": 0.8182018544656038,
|
30 |
+
"eval_f1_weighted": 0.8692514554747078,
|
31 |
+
"eval_loss": 0.3033996522426605,
|
32 |
+
"eval_runtime": 16.7014,
|
33 |
+
"eval_samples_per_second": 239.501,
|
34 |
+
"eval_steps_per_second": 14.969,
|
35 |
"step": 1000
|
36 |
},
|
37 |
{
|
38 |
"epoch": 1.5,
|
39 |
+
"learning_rate": 1e-05,
|
40 |
+
"loss": 0.2538,
|
41 |
"step": 1500
|
42 |
},
|
43 |
{
|
44 |
"epoch": 2.0,
|
45 |
+
"learning_rate": 6.666666666666667e-06,
|
46 |
+
"loss": 0.2352,
|
47 |
"step": 2000
|
48 |
},
|
49 |
{
|
50 |
"epoch": 2.0,
|
51 |
+
"eval_accuracy": 0.87325,
|
52 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.915104 0.917822 0.916461 3030.00000\n1 0.740895 0.734021 0.737442 970.00000\naccuracy 0.873250 0.873250 0.873250 0.87325\nmacro avg 0.827999 0.825921 0.826951 4000.00000\nweighted avg 0.872858 0.873250 0.873049 4000.00000",
|
53 |
+
"eval_confusion_matrix": "[[2781 249]\n [ 258 712]]",
|
54 |
+
"eval_confusion_matrix_norm": "[[0.91782178 0.08217822]\n [0.26597938 0.73402062]]",
|
55 |
+
"eval_f1": 0.737441740031072,
|
56 |
+
"eval_f1_macro": 0.826951220979451,
|
57 |
+
"eval_f1_weighted": 0.8730486036678663,
|
58 |
+
"eval_loss": 0.37301740050315857,
|
59 |
+
"eval_runtime": 16.7066,
|
60 |
+
"eval_samples_per_second": 239.426,
|
61 |
+
"eval_steps_per_second": 14.964,
|
62 |
"step": 2000
|
63 |
},
|
64 |
{
|
65 |
"epoch": 2.5,
|
66 |
+
"learning_rate": 3.3333333333333333e-06,
|
67 |
+
"loss": 0.1625,
|
68 |
"step": 2500
|
69 |
},
|
70 |
{
|
71 |
"epoch": 3.0,
|
72 |
+
"learning_rate": 0.0,
|
73 |
+
"loss": 0.1566,
|
74 |
"step": 3000
|
75 |
},
|
76 |
{
|
77 |
"epoch": 3.0,
|
78 |
+
"eval_accuracy": 0.8775,
|
79 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.906791 0.934323 0.920351 3030.0000\n1 0.773349 0.700000 0.734848 970.0000\naccuracy 0.877500 0.877500 0.877500 0.8775\nmacro avg 0.840070 0.817162 0.827600 4000.0000\nweighted avg 0.874431 0.877500 0.875367 4000.0000",
|
80 |
+
"eval_confusion_matrix": "[[2831 199]\n [ 291 679]]",
|
81 |
+
"eval_confusion_matrix_norm": "[[0.93432343 0.06567657]\n [0.3 0.7 ]]",
|
82 |
+
"eval_f1": 0.7348484848484848,
|
83 |
+
"eval_f1_macro": 0.8275997950900422,
|
84 |
+
"eval_f1_weighted": 0.8753667198644444,
|
85 |
+
"eval_loss": 0.4632544219493866,
|
86 |
+
"eval_runtime": 16.6967,
|
87 |
+
"eval_samples_per_second": 239.568,
|
88 |
+
"eval_steps_per_second": 14.973,
|
89 |
"step": 3000
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 3.0,
|
93 |
+
"step": 3000,
|
94 |
+
"total_flos": 1.262933065728e+16,
|
95 |
+
"train_loss": 0.2591003138224284,
|
96 |
+
"train_runtime": 651.1299,
|
97 |
+
"train_samples_per_second": 73.718,
|
98 |
+
"train_steps_per_second": 4.607
|
99 |
}
|
100 |
],
|
101 |
"max_steps": 3000,
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23bdb167d6ed64d8a4fa58d65ab66a6eb55ed2e97a0cb401fb31212f13e2e697
|
3 |
+
size 3643
|